Skip to main content

Advertisement

Log in

High Selectivity of Medium Distillates in Fischer–Tropsch Synthesis Using Dual Bed

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A dual bed was used as an alternative to favor Fischer–Tropsch Synthesis (FTS) selectivity towards products with higher added value (C10–C20), as waxes produced on metallic sites may be cracked on acid sites. For the FT catalyst, the use of SiC as support favors heat transfer and temperature maintenance due to its high thermal conductivity. Concerning acid catalyst, mesoporous zeolite tends to increase accessibility to sites and cracking of heavier molecules. Therefore, mesopores were created from the pristine NaY zeolite using a sequence of acid and alkaline post-treatments. The catalysts were characterized by N2 physisorption, XRD, TPR, SEM/EDS, TGA, Raman, and XRF. Three configurations: Co/SiC (A), Co/SiC + Meso Y zeolite (B) and physical mixture of two catalysts (C), were evaluated in an FTS reactor at 483 K, 2.0 MPa, H2/CO = 2. The highest selectivity to diesel and lubricants, with a stable CO conversion of 10%, was obtained with configuration B. The association of mesoporous Y zeolite with Co/SiC catalyst contributed to cracking heavy products (C21+), favoring low methane formation and yields above 30% kerosene and diesel.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Leckel D (2009) Diesel production from Fischer−Tropsch: the past, the present, and new concepts. Energy Fuels 23:2342–2358

    Article  CAS  Google Scholar 

  2. Steynberg AP, Dry ME (2004) Fischer-Tropsch technology. Elsevier, Amsterdam

    Book  Google Scholar 

  3. Rytter E, Tsakoumis NE, Holmen A (2016) On the selectivity to higher hydrocarbons in Co-based Fischer-Tropsch synthesis. Catal Today 261:3–16

    Article  CAS  Google Scholar 

  4. Perry R, Green DW, Maloney JO (1999) Perry’s chemical engineers’s

  5. Dinse A, Aigner M, Ulbrich M et al (2012) Effects of Mn promotion on the activity and selectivity of Co/SiO2 for Fischer-Tropsch synthesis. J Catal 288:104–114. https://doi.org/10.1016/j.jcat.2012.01.008

    Article  CAS  Google Scholar 

  6. Rane S, Borg O, Rytter E, Holmen A (2012) Relation between hydrocarbon selectivity and cobalt particle size for alumina supported cobalt Fischer-Tropsch catalysts. Appl Catal A Gen 437–438:10–17. https://doi.org/10.1016/j.apcata.2012.06.005

    Article  CAS  Google Scholar 

  7. Lacroix M, Dreibine L, De Tymowski B et al (2011) Silicon carbide foam composite containing cobalt as a highly selective and re-usable Fischer-Tropsch synthesis catalyst. Appl Catal A Gen 397:62–72. https://doi.org/10.1016/j.apcata.2011.02.012

    Article  CAS  Google Scholar 

  8. Wang D, Chen C, Wang J et al (2015) Silicon carbide supported cobalt for Fischer-Tropsch synthesis: probing into the cause of the intrinsic excellent catalytic performance. RSC Adv 5:98900–98903

    Article  CAS  Google Scholar 

  9. De Tymowski B, Liu Y, Meny C et al (2012) Co-Ru/SiC impregnated with ethanol as an effective catalyst for the Fischer-Tropsch synthesis. Appl Catal A Gen 419–420:31–40. https://doi.org/10.1016/j.apcata.2012.01.004

    Article  CAS  Google Scholar 

  10. Philippe R, Lacroix M, Dreibine L et al (2009) Effect of structure and thermal properties of a Fischer-Tropsch catalyst in a fixed bed. Catal Today 147:305–312. https://doi.org/10.1016/j.cattod.2009.07.058

    Article  CAS  Google Scholar 

  11. Solomonik IG, Gryaznov KO, Skok VF, Mordkovich VZ (2015) Formation of surface cobalt structures in SiC-supported Fischer-Tropsch catalysts. RSC Adv 5:78586–78597. https://doi.org/10.1039/c5ra11853k

    Article  CAS  Google Scholar 

  12. de la Osa AR, Romero A, Dorado F et al (2016) Influence of cobalt precursor on efficient production of commercial fuels over FTS Co/SiC catalyst. Catalysts 6:98–116. https://doi.org/10.3390/catal6070098

    Article  CAS  Google Scholar 

  13. Wang M, Guo S, Li Z et al (2019) The role of SiOxCy in the catalytic performance of Co/SiC catalysts for Fischer-Tropsch synthesis. Fuel 241:669–675. https://doi.org/10.1016/j.fuel.2018.12.033

    Article  CAS  Google Scholar 

  14. Zhang Q, Cheng K, Kang J et al (2014) Fischer-Tropsch catalysts for the production of hydrocarbon fuels with high selectivity. Chemsuschem 7:1251–1264. https://doi.org/10.1002/cssc.201300797

    Article  CAS  PubMed  Google Scholar 

  15. Martínez A, Rollán J, Arribas MA et al (2007) A detailed study of the activity and deactivation of zeolites in hybrid Co/SiO2-zeolite Fischer-Tropsch catalysts. J Catal 249:162–173

    Article  Google Scholar 

  16. Corsaro A, Wiltowski T, Juchelkova D, Honus S (2014) Conversion of syngas to LPG and aromatics over commercial Fischer-Tropsch catalyst and HZSM-5 in a dual bed reactor. Pet Sci Technol 32:2497–2505

    Article  CAS  Google Scholar 

  17. Corsaro A, Wiltowski T, Juchelov D (2014) The conversion of syngas to liquid fuels in a dual-bed single reactor process. Pet Sci Technol 32:2722–2729

    Article  CAS  Google Scholar 

  18. Zhao B, Zhai P, Wang P et al (2017) Direct transformation of syngas to aromatics over Na-Zn-Fe5C2 and hierarchical HZSM-5. Chem 3:323–333

    Article  CAS  Google Scholar 

  19. Sun B, Qiao M, Fan K et al (2011) Fischer-Tropsch synthesis over molecular sieve supported catalysts. ChemCatChem 3:542–550

    Article  CAS  Google Scholar 

  20. Kang SH, Bae JW, Prasad PSS, Jun KW (2008) Fischer-Tropsch synthesis using zeolite-supported iron catalysts for the production of light hydrocarbons. Catal Lett 125:264–270

    Article  CAS  Google Scholar 

  21. Zhang J, Wang L, Ji Y et al (2018) Mesoporous zeolites for biofuel upgrading and glycerol conversion. Front Chem Sci Eng 12:132–144

    Article  CAS  Google Scholar 

  22. da Silva JF, Bragança LFFPG, da Silva MIP (2018) Catalytic performance of KL zeolite-supported iron and cobalt catalysts for the Fischer-Tropsch synthesis. React Kinet Mech Catal 124:563–574

    Article  Google Scholar 

  23. Li H, Hou B, Wang J et al (2018) Direct conversion of syngas to isoparaffins over hierarchical beta zeolite supported cobalt catalyst for Fischer-Tropsch synthesis. Mol Catal 459:106–112. https://doi.org/10.1016/j.mcat.2018.08.002

    Article  CAS  Google Scholar 

  24. Xing C, Yang G, Wu M et al (2015) Hierarchical zeolite Y supported cobalt bifunctional catalyst for facilely tuning the product distribution of Fischer-Tropsch synthesis. Fuel 148:48–57. https://doi.org/10.1016/j.fuel.2015.01.040

    Article  CAS  Google Scholar 

  25. Tao Y, Kanoh H, Abrams L, Kaneko K (2006) Mesopore modified zeolites: preparation, characterization, and applications. Chem Rev 106:896–910

    Article  CAS  Google Scholar 

  26. Varma RL, Bakhshi NN, Mathews JF, Ng SH (1987) Performance of dual-reactor system for conversion of syngas to aromatic-containing hydrocarbons. Ind Eng Chem Res 26:183–188

    Article  CAS  Google Scholar 

  27. Jothimurugesan G (1998) Titania-supported bimetallic catalysts combined with HZSM-5 for Fischer-Tropsch synthesis. Ind Eng Chem Res 37:1181–1188

    Article  CAS  Google Scholar 

  28. Martínez A, Valencia S, Murciano R et al (2008) Catalytic behavior of hybrid Co/SiO2-(medium-pore) zeolite catalysts during the one-stage conversion of syngas to gasoline. Appl Catal A Gen 346:117–125

    Article  Google Scholar 

  29. de la Osa AR, Romero A, Díez-Ramírez J et al (2017) Influence of a zeolite-based cascade layer on Fischer-Tropsch fuels production over silicon carbide supported cobalt catalyst. Top Catal 60:1082–1093. https://doi.org/10.1007/s11244-017-0792-2

    Article  CAS  Google Scholar 

  30. Cheng K, Zhou W, Kang J et al (2017) Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability. Chem 3:334–347. https://doi.org/10.1016/j.chempr.2017.05.007

    Article  CAS  Google Scholar 

  31. Xu Y, Liu D, Liu X (2018) Conversion of syngas toward aromatics over hybrid Fe-based Fischer-Tropsch catalysts and HZSM-5 zeolites. Appl Catal A Gen 552:168–183

    Article  CAS  Google Scholar 

  32. Liu ZW, Li X, Asami K, Fujimoto K (2005) Iso-paraffins synthesis from modified Fischer-Tropsch reaction: insights into Pd/beta and Pt/beta catalysts. Catal Today 104:41–47

    Article  CAS  Google Scholar 

  33. Peng X, Cheng K, Kang J et al (2015) Impact of hydrogenolysis on the selectivity of the Fischer-Tropsch synthesis: diesel fuel production over mesoporous zeolite-Y-supported cobalt nanoparticles. Angew Chemie Int Ed 54:4553–4556. https://doi.org/10.1002/anie.201411708

    Article  CAS  Google Scholar 

  34. Tao Y, Kanoh H, Kaneko K (2003) Uniform mesopore-donated zeolite Y using carbon aerogel templating. J Phys Chem B 107:10974–10976. https://doi.org/10.1021/jp0356822

    Article  CAS  Google Scholar 

  35. Jin J, Peng C, Wang J et al (2014) Facile synthesis of mesoporous zeolite y with improved catalytic performance for heavy oil fluid catalytic cracking. Ind Eng Chem Res 53:3406–3411. https://doi.org/10.1021/ie403486x

    Article  CAS  Google Scholar 

  36. Tempelman CHL, Zhu X, Gudun K et al (2015) Texture, acidity and fluid catalytic cracking performance of hierarchical faujasite zeolite prepared by an amphiphilic organosilane. Fuel Process Technol 139:248–258. https://doi.org/10.1016/j.fuproc.2015.06.025

    Article  CAS  Google Scholar 

  37. Zhao J, Wang G, Qin L et al (2016) Synthesis and catalytic cracking performance of mesoporous zeolite y. Catal Commun 73:98–102. https://doi.org/10.1016/j.catcom.2015.10.020

    Article  CAS  Google Scholar 

  38. Zhao J, Yin Y, Li Y et al (2016) Synthesis and characterization of mesoporous zeolite Y by using block copolymers as templates. Chem Eng J 284:405–411. https://doi.org/10.1016/j.cej.2015.08.143

    Article  CAS  Google Scholar 

  39. Qin Z, Shen B, Gao X et al (2011) Mesoporous y zeolite with homogeneous aluminum distribution obtained by sequential desilication-dealumination and its performance in the catalytic cracking of cumene and 1,3,5-triisopropylbenzene. J Catal 278:266–275. https://doi.org/10.1016/j.jcat.2010.12.013

    Article  CAS  Google Scholar 

  40. Qin Z, Shen B, Yu Z et al (2013) A defect-based strategy for the preparation of mesoporous zeolite y for high-performance catalytic cracking. J Catal 298:102–111. https://doi.org/10.1016/j.jcat.2012.11.023

    Article  CAS  Google Scholar 

  41. Verboekend D, Pérez-Ramírez J (2011) Design of hierarchical zeolite catalysts by desilication. Catal Sci Technol 1:879–890. https://doi.org/10.1039/c1cy00150g

    Article  CAS  Google Scholar 

  42. Verboekend D, Vilé G, Pérez-Ramírez J (2012) Mesopore formation in usy and beta zeolites by base leaching: selection criteria and optimization of pore-directing agents. Cryst Growth Des 12:3123–3132. https://doi.org/10.1021/cg3003228

    Article  CAS  Google Scholar 

  43. Verboekend D, Vilé G, Pérez-Ramírez J (2012) Hierarchical y and USY zeolites designed by post-synthetic strategies. Adv Funct Mater 22:916–928. https://doi.org/10.1002/adfm.201102411

    Article  CAS  Google Scholar 

  44. Verboekend D, Keller TC, Mitchell S, Pérez-Ramírez J (2013) Hierarchical FAU- and LTA-type zeolites by post-synthetic design: a new generation of highly efficient base catalysts. Adv Funct Mater 23:1923–1934. https://doi.org/10.1002/adfm.201202320

    Article  CAS  Google Scholar 

  45. Garcia-Martinez J, Johnson MM, Valla I (2010) US 2010/0196263 a1

  46. García-Martínez J, Johnson M, Valla J et al (2012) Mesostructured zeolite y: high hydrothermal stability and superior FCC catalytic performance. Catal Sci Technol 2:987–994. https://doi.org/10.1039/c2cy00309k

    Article  CAS  Google Scholar 

  47. Junji Arika T, Michiyuki Aimoto K, Hiroshi Miyazaki S (1986) US Patent May 6 , 1986. 185-192.

  48. Kasahara S, Itabashi K, Igawa K (1986) Clear aqueous nuclei solution for faujasite synthesis. Stud Surf Sci Catal 28:185–192. https://doi.org/10.1016/S0167-2991(09)60872-7

    Article  CAS  Google Scholar 

  49. Westphalen G, Baldanza MAS, de Almeida AJ et al (2021) Improvement of C-C coupling using SiC as a support of cobalt catalysts in Fischer Tropsch synthesis. Catal Lett. https://doi.org/10.1007/s10562-021-03775-6

    Article  Google Scholar 

  50. Hriljac JA, Eddy MM, Cheetham AK et al (1993) Powder neutron diffraction and Si MAS NMR studies of siliceous zeolite-Y. J Solid State Chem 106:66–72

    Article  CAS  Google Scholar 

  51. Treacy MM, Higgins JB (2001) Collection of simulated XRD powder patterns for zeolites, 4th edn. Elsevier, Amsterdam

    Google Scholar 

  52. Thommes M, Kaneko K, Neimark AV et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  53. Díaz JA, Calvo-Serrano M, De La Osa AR et al (2014) B-Silicon carbide as a catalyst support in the Fischer-Tropsch synthesis: influence of the modification of the support by a pore agent and acidic treatment. Appl Catal A Gen 475:82–89. https://doi.org/10.1016/j.apcata.2014.01.021

    Article  CAS  Google Scholar 

  54. Lee JS, Jung JS, Moon DJ (2015) The effect of cobalt loading on Fischer Tropsch synthesis over silicon carbide supported catalyst. J Nanosci Nanotechnol 15:396–399. https://doi.org/10.1166/jnn.2015.8350

    Article  CAS  PubMed  Google Scholar 

  55. Rane S, Borg Ø, Yang J et al (2010) Effect of alumina phases on hydrocarbon selectivity in Fischer-Tropsch synthesis. Appl Catal A Gen 388:160–167

    Article  CAS  Google Scholar 

  56. Iglesia E (1997) Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. Appl Catal A Gen 161:59–78. https://doi.org/10.1016/S0926-860X(97)00186-5

    Article  CAS  Google Scholar 

  57. Bezemer GL, Bitter JH, Kuipers HPCE et al (2006) Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts. J Am Chem Soc 128:3956–3964. https://doi.org/10.1021/ja058282w

    Article  CAS  PubMed  Google Scholar 

  58. Díaz JA, Calvo-Serrano M, De La Osa AR et al (2014) β-Silicon carbide as a catalyst support in the Fischer-Tropsch synthesis: influence of the modification of the support by a pore agent and acidic treatment. Appl Catal A Gen 475:82–89. https://doi.org/10.1016/j.apcata.2014.01.021

    Article  CAS  Google Scholar 

  59. Lillebø A, Håvik S, Blekkan EA, Holmen A (2013) Fischer-Tropsch synthesis on SiC-supported cobalt catalysts. Top Catal 56:730–736. https://doi.org/10.1007/s11244-013-0032-3

    Article  CAS  Google Scholar 

  60. Munirathinam R, Pham Minh D, Nzihou A (2018) Effect of the support and its surface modifications in cobalt-based Fischer-Tropsch synthesis. Ind Eng Chem Res 57:16137–16161. https://doi.org/10.1021/acs.iecr.8b03850

    Article  CAS  Google Scholar 

  61. Wang M, Guo S, Li Z et al (2019) The role of SiO x C y in the catalytic performance of Co/SiC catalysts for Fischer-Tropsch synthesis. Fuel 241:669–675. https://doi.org/10.1016/j.fuel.2018.12.033

    Article  CAS  Google Scholar 

  62. Song D, Li J (2006) Effect of catalyst pore size on the catalytic performance of silica supported cobalt Fischer-Tropsch catalysts. J Mol Catal A Chem 247:206–212

    Article  CAS  Google Scholar 

  63. Pegios N, Bliznuk V, Prünte S et al (2018) Comparative study on La-promoted Ni/γ-Al2O3 for methane dry reforming-spray drying for enhanced nickel dispersion and strong metal-support interactions. RSC Adv 8:606–618

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001. We would like to dedicate this work to the memory of Prof. Victor Teixeira da Silva.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Methodology, Formal analysis, Investigation, Resources, Writing - Original Draft: GW; Conceptualization, Methodology, Formal analysis, Investigation, Resources, Writing - Original Draft: KAC; Methodology, Formal analysis, Investigation, Resources: MASB; Investigation: AJA; Supervision, Writing - Review & Editing: VMMS; Supervision, Methodology, Writing - Review & Editing: MAPS; Supervision, Methodology, Writing - Review & Editing: VTS.

Corresponding author

Correspondence to Gisele Westphalen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 898 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Westphalen, G., Cortez, K.A., Baldanza, M.A.S. et al. High Selectivity of Medium Distillates in Fischer–Tropsch Synthesis Using Dual Bed. Catal Lett 152, 2533–2542 (2022). https://doi.org/10.1007/s10562-021-03834-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03834-y

Keywords

Navigation