Skip to main content
Log in

Different mechanisms for metal-induced adaptation to cadmium in the human lung cell lines A549 and H441

  • Original Research
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Sensitivity to Cd and Zn as well as the capacity to develop tolerance were characterized in human lung cells A549 and H441. In the A549 cells, a 2-fold lower LC50 was obtained for Cd compared to Zn, whereas H441 cells were similarly sensitive to both metals. H441 cells were twice as resistant to Cd as the A549 cells. Higher HSP70, but not metallothionein (MT) or glutathione (GSH) levels, could contribute to this better resistance. A 1.5- and 2-fold increase in the LC50 for Cd was obtained in the A549 cells pre-exposed to non-cytotoxic concentrations of Cd (20 μM) or Zn (40 μM) for 24 h. On the other hand, only Zn increased H441 cells’ resistance to Cd. Maximum Zn- and Cd-induced tolerances were reached as early as 3 and 12 h, respectively. Increases in MT-IIa and HSP70 messenger RNA levels were higher in A549 cells, but cycloheximide eliminated the induction of tolerance only in the H441 cells. Protein synthesis is a prerequisite for metal-induced tolerance to Cd in the H441 cells but not the A549 cells. Results obtained with l-buthionine sulfoximine revealed that GSH synthesis is not responsible for the acquired tolerance in both cell lines. However, GSH plays a critical role against Cd toxicity, and pro-oxidant conditions sensitized cells to Cd with different impacts on the metal-induced mechanisms of acquired tolerance. GSH and catalase both provide antioxidative protection, but only the stress related to low GSH content, not that resulting from catalase inhibition, may be alleviated with Zn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Andujar P, Bensefa-Colas L, Descatha A. Acute and chronic cadmium poisoning. Rev Med Interne. 2010;31:107–15.

    Article  PubMed  CAS  Google Scholar 

  • Awasthi V, King RJ. PKC, p42/p44 MAPK, and p38 MAPK are required for HGF-induced proliferation of H441 cells. Am J Physiol Lung Cell Mol Physiol. 2000;279:L942–49.

    PubMed  CAS  Google Scholar 

  • Barceloux DG. Zinc. J Toxicol Clin Toxicol. 1999;37:279–92.

    Article  PubMed  CAS  Google Scholar 

  • Boesewetter DE, Collier JL, Kim AM, Riley MR. Alterations of A549 lung cell gene expression in response to biochemical toxins. Cell Biol Toxicol. 2006;22:101–18.

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  PubMed  CAS  Google Scholar 

  • Cardin GB, Mantha M, Jumarie C. Resistance to cadmium as a function of Caco-2 cell differentiation: role of reactive oxygen species in cadmium- but not zinc-induced adaptation mechanisms. Biometals. 2009;22:753–69.

    Article  PubMed  CAS  Google Scholar 

  • Croute F, Beau B, Murat JC, Vincent C, Kormatsu H, Obata F, et al. Expression of stress-related genes in a cadmium-resistant A549 human cell line. J Toxicol Environ Health A. 2005;68:703–18.

    Article  PubMed  CAS  Google Scholar 

  • Dagenais A, Fréchette R, Clermont ME, Massé C, Privé A, Brochiero E, et al. Dexamethasone inhibits the action of TNF on ENaC expression and activity. Am J Physiol Lung Cell Mol Physiol. 2006;291:L1220–31.

    Article  PubMed  CAS  Google Scholar 

  • Deng Z, Daily LA, Soukup J, Stonehuerner J, Richards JD, Callaghan KD, et al. Zinc transport by respiratory epithelial cells and interaction with iron homeostasis. Biometals. 2009;22:803–15.

    Article  PubMed  CAS  Google Scholar 

  • Dokladny K, Wharton W, Wa TY, Moseley PL. Lack of cross-tolerance following heat and cadmium exposure in functional MDCK monolayers. J Appl Toxicol. 2008;28:885–94.

    Article  PubMed  CAS  Google Scholar 

  • Feng T, Yunfeng N, Jinbo Z, Zhipei Z, Huizhong Z, Li L, et al. Single immunoglobulin IL-1 receptor-related protein attenuates the lipopolysaccharide-induced inflammatory response in A549 cells. Chem Biol Interact. 2010;183:442–49.

    Article  PubMed  Google Scholar 

  • Formigari A, Irato P, Santon A. Zinc, antioxidant systems and metallothionein in metal mediated-apoptosis: biochemical and cytochemical aspects. Comp Biochem Physiol C Toxicol Pharmacol. 2007;146:443–59.

    Article  PubMed  Google Scholar 

  • Forti E, Bulgheroni A, Cetin Y, Hartung T, Jennings P, Pfaller W, et al. Characterisation of cadmium chloride induced molecular and functional alterations in airway epithelial cells. Cell Physio Biochem. 2010;25:159–68.

    Google Scholar 

  • Gazaryan IG, Krasnikov BF, Ashby GA, Thorneley RN, Kristal BS, Brown AM. Zinc is a potent inhibitor of thiol oxidoreductase activity and stimulates reactive oxygen species production by lipoamide dehydrogenase. J Biol Chem. 2002;277:10064–072.

    Article  PubMed  CAS  Google Scholar 

  • Hatcher E, Chen Y, Kang YJ. Cadmium resistance in A549 cells correlates with elevated glutathione content but not antioxidant enzymatic activities. Free Radic Biol Med. 1995;19:805–12.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi S, Sakurai H, Hayashi A, Tanaka Y, Hatashita M, Shioura H. Inhibition of NF-kappaB by combination therapy with parthenolide and hyperthermia and kinetics of apoptosis induction and cell cycle arrest in human lung adenocarcinoma cells. Int J Mol Med. 2010;25:81–7.

    PubMed  CAS  Google Scholar 

  • Hendrick DJ. Occupation and chronic obstructive pulmonary diseases (COPD). Thorax. 1996;51:947–55.

    Article  PubMed  CAS  Google Scholar 

  • Hissin PJ, Hilf R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem. 1976;74:214–26.

    Article  PubMed  CAS  Google Scholar 

  • Hukkanen J, Lassila A, Päivärinta K, Valanne S, Sarpo S, Hakkola J, et al. Induction and regulation of xenobiotic-metabolizing cytochrome P450s in the human A549 lung adenocarcinoma cell line. Am J Respir Cell Mol Biol. 2000;2:360–66.

    Article  Google Scholar 

  • Huynh-Delerme C, Huet H, Noel L, Frigieri A, Kolf-Clauw M. Increased functional expression of P-glycoprotein in Caco-2 TC7 cells exposed long-term to cadmium. Toxicol In Vitro. 2005;19:439–47.

    Article  PubMed  CAS  Google Scholar 

  • Järup L, Âkesson A. Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol. 2009;238:201–8.

    Article  PubMed  Google Scholar 

  • Jihenel H, Imed M, Fatima H, Abdelhamid K. Protective effects of selenium (Se) and zinc (Zn) on cadmium (Cd) toxicity in the liver of the rat: effects on the oxidative stress. Ecotoxicol Environ Saf. 2009;72:1559–64.

    Article  Google Scholar 

  • Jumarie C. Cadmium transport through type II alveolar cell monolayers: contribution of transcellular and paracellular pathways in the rat ATII and the human A549 cells. Biochim Biophys Acta. 2002;1564:487–99.

    Article  PubMed  CAS  Google Scholar 

  • Kang YJ, Enger MD. Cadmium cytotoxicity correlates with the changes in glutathione content that occur during the logarithmic growth phase of A549-T27 cells. Toxicol Lett. 1190;51:23–8.

    Article  Google Scholar 

  • Kang YJ, Nuutero ST, Clapper JA, Jenkins P, Enger MD. Cellular cadmium responses in subpopulations T20 and T27 of human lung carcinoma A549 cells. Toxicology. 1990;61:195–203.

    Article  PubMed  CAS  Google Scholar 

  • Kim EY, Koh JY, Kim YH, Sohn S, Joe E, Gwag BJ. Zn2+ entry produces oxidative neuronal necrosis in cortical cell cultures. Eur J Neurosci. 1999;11:327–34.

    Article  PubMed  CAS  Google Scholar 

  • Klaassen CD, Liu J, Choudhuri S. Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol. 1999;39:267–94.

    Article  PubMed  CAS  Google Scholar 

  • Lau AT, Zhang J, Chiu JF. Acquired tolerance in cadmium-adapted lung epithelial cells: roles of the c-Jun N-terminal kinase signaling pathway and basal level of metallothionein. Toxicol Appl Pharmacol. 2006;215:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Lieber M, Smith B, Szakal A, Nelson-Rees W, Todaro G. A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int J Cancer. 1976;17:62–70.

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Qu W, Kadiiska MB. Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol Appl Pharmacol. 2009;238:209–14.

    Article  PubMed  CAS  Google Scholar 

  • Lucas R, Sridhar S, Rick FG, Gorshkov B, Umapathy NS, Yang G, et al. Agonist of growth hormone-releasing hormone reduces pneumolysin-induced pulmonary permeability edema. Proc Natl Acad Sci USA. 2012;109:2084–89.

    Article  PubMed  CAS  Google Scholar 

  • Mantha M, El Idrissi L, Leclerc-Beaulieu T, Jumarie C. Fe- and Zn-induced inhibition of Cd uptake in human lung cell lines: speciation studies with H441 and A549 cells. Toxicol In Vitro. 2011;25:1701–11.

    Article  PubMed  CAS  Google Scholar 

  • Nemec AA, Leikauf GD, Pitt BR, Wasserloos KJ, Barchowsky A. Nickel mobilizes intracellular zinc to induced metallothionein in human airway epithelial cells. Am J Respir Cell Mol Biol. 2009;41:69–75.

    Article  PubMed  CAS  Google Scholar 

  • Nzengue Y, Steiman R, Rachidi W, Favier A, Guiraud P. Oxidative stress induced by cadmium in the C6 cell line: role of copper and zinc. Biol Trace Elem Res. 2011;146:410–9.

    Google Scholar 

  • O’Donovan DJ, Katkin JP, Tamura T, Smith CV, Welty SE. Attenuation of hyperoxia-induced growth inhibition in H441 cells by gene transfer of mitochondrially targeted glutathione reductase. Am J Respir Cell Mol Biol. 2000;22:732–38.

    Article  PubMed  Google Scholar 

  • O’Reilly MA, Weaver TE, Pilot-Matias TJ, Sarin VK, Gazdar AF, Whitsett JA. In vitro translation, post-translational processing and secretion of pulmonary surfactant protein B precursors. Biochim Biophys Acta. 1989;1011:140–48.

    Article  PubMed  Google Scholar 

  • Papritz M, Pohl C, Wubbeke C, Moisch M, Hofmann H, Hermanns MI, et al. Side-specific effects by cadmium exposure: apical and basolateral treatment in a coculture model of the blood-air barrier. Toxicol Appl Pharmacol. 2010;245:361–69.

    Article  PubMed  CAS  Google Scholar 

  • Rennolds J, Butler S, Maloney K, Boyaka PN, Davis IC, Knoell DL, et al. Cadmium regulates the expression of the CFTR chloride channel in human airway epithelial cells. Toxicol Sci. 2012;116:349–58.

    Article  Google Scholar 

  • Scandalios JG. Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res. 2005;38:995–1014.

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Zimmermann S, Krug HF, Sures B. Influence of platinum, palladium and rhodium as compared with cadmium, nickel and chromium on cell viability and oxidative stress in human bronchial cells. Environ Inter. 2007;33:385–90.

    Article  CAS  Google Scholar 

  • Shin HJ, Lee BH, Yeo MG, Oh SH, Park JD, Park KK, et al. Induction of orphan nuclear receptor Nur77 gene expression and its role in cadmium-induced apoptosis in lung. Carcinogenesis. 2004;25:1467–75.

    Article  PubMed  CAS  Google Scholar 

  • Slater TF, Sawyer B, Strauli U. Studies on succinate-tetrazolium reductase systems: III. Points of coupling of four different tetrazolium salts. Biochim Biophys Acta. 1963;77:383–93.

    Article  PubMed  CAS  Google Scholar 

  • Surh YJ, Kundu JK, Na HK, Lee JS. Redox-sensitive transcription factors as prime target for chemoprevention with anti-inflammatory and antioxidative phytochemicals. J Nutr. 2005;135:2993S–3001S.

    PubMed  CAS  Google Scholar 

  • Terao Y, Miyamoto S, Hirai K, Kamiguchi H, Ohta H, Shimoto M, et al. Hypothermia enhences heat-shock protein 70 production in ischemic brains. Neuroreport. 2009;20:745–9.

    Article  PubMed  CAS  Google Scholar 

  • Thomas KH, Meyn P, Suttorp N. Single nucleotide polymorphism in 5’-flanking region reduces transcription of surfactant protein B gene in H441 cells. Am J Physiol Lung Cell Mol Physiol. 2006;291:L386–90.

    Article  PubMed  CAS  Google Scholar 

  • Urani C, Melchioretto P, Canevali C, Crosta GF. Cytotoxicity and induction of protective mechanisms in HepG2 cells exposed to cadmium. Toxicol In Vitro. 2005;19:887–92.

    Article  PubMed  CAS  Google Scholar 

  • Waisberg M, Joseph P, Hale B, Beyersmann D. Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology. 2003;192:95–117.

    Article  PubMed  CAS  Google Scholar 

  • Walther IU, Mückter H, Fichtl B, Forth W. Influence of glutathione on zinc-mediated cellular toxicity. Biol Trace Elem Res. 1999;67:97–107.

    Google Scholar 

  • Walther UI, Wilhelm B, Walther S, Mückter H, Fichtl B. Zinc toxicity in various lung cell lines is mediated bu glutathione and GSSG reductase activity. Biol Trace Elem Res. 2000;78:163–77.

    Google Scholar 

  • Wang Y, Fang J, Leonard SS, Rao KM. Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radic Biol Med. 2004;36:1434–43.

    Article  PubMed  CAS  Google Scholar 

  • Vasconcelos MH, Tam SC, Hesketh JE, Reid M, Beattie JH. Metal- and Tissue-Dependent Relationship between Metallothionein mRNA and Protein. Toxicol Appl Pharmacol 2002;182:91–7.

    Google Scholar 

  • Wätjen W, Cox M, Biagiolo M, Beyersmann D. Cadmium-induced apoptosis in C6 gliona cells: mediation by caspase 9-activation. Biometals. 2002;15:15–25.

    Article  PubMed  Google Scholar 

  • Wong PS, Vogel CF, Kokosinski K, Matsumura F. Arylhydrocarbon receptor activation in NCI-H441 cells and C57BL/6 mice: possible mechanisms for lung dysfunction. Am J Respir Cell Mol Biol. 2010;42:210–17.

    Article  PubMed  CAS  Google Scholar 

  • Wu BN, Chen HY, Liu CP, Hsu LY, Chen IJ. KMUP-1 inhibits H441 lung epithelial cell growth, migration and proinflammation via increased NO/CGMP and inhibited RHO kinase/VEGF signaling pathways. Int J Immunopathol Pharmacol. 2011a;24:925–39.

    PubMed  CAS  Google Scholar 

  • Wu C, Zhang W, Mai K, Xu W, Zhong X. Effects of dietary zinc on gene expression of antioxidant enzymes and heat shock proteins in hepatopancreas of abalone Haliotis discus hannai. Comp Biochem Physiol C Toxicol Pharmacol. 2011b;154:1–6.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Science and Engineering Research Council of Canada Strategic Network Metal in the Human Environment NSERC Strategic Network (MITHE-SN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Jumarie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sauvageau, JA., Jumarie, C. Different mechanisms for metal-induced adaptation to cadmium in the human lung cell lines A549 and H441. Cell Biol Toxicol 29, 159–173 (2013). https://doi.org/10.1007/s10565-013-9243-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-013-9243-4

Keywords

Navigation