Skip to main content

Advertisement

Log in

Differential epitranscriptome and proteome modulation in the brain of neonatal mice exposed to isoflurane or sevoflurane

  • Original Article
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Background

Repeated neonatal exposure to anesthetics may disturb neurodevelopment and cause neuropsychological disorders. The m6A modification participates in the gene regulation of neurodevelopment in mouse fetuses exposed to anesthetics. This study aims to explore the underlying molecular mechanisms of neurotoxicity after early-life anesthesia exposure.

Methods

Mice were exposed to isoflurane (1.5%) or sevoflurane (2.3%) for 2 h daily during postnatal days (PND) 7–9. Sociability, spatial working memory, and anxiety-like behavior were assessed on PND 30–35. Synaptogenesis, epitranscriptome m6A, and the proteome of brain regions were evaluated on PND 21.

Results

Both isoflurane and sevoflurane produced abnormal social behaviors at the juvenile age, with different sociality patterns in each group. Synaptogenesis in the hippocampal area CA3 was increased in the sevoflurane-exposed mice. Both anesthetics led to numerous persistent m6A-induced alterations in the brain, associated with critical metabolic, developmental, and immune functions. The proteins altered by isoflurane exposure were mainly associated with epilepsy, ataxia, and brain development. As for sevoflurane, the altered proteins were involved in social behavior.

Conclusions

Social interaction, the modulation patterns of the m6A modification, and protein expression were altered in an isoflurane or sevoflurane-specific way. Possible molecular pathways involved in brain impairment were revealed, as well as the mechanism underlying behavioral deficits following repeated exposure to anesthetics in newborns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amrock LG, Starner ML, Murphy KL, Baxter MG. Long-term effects of single or multiple neonatal sevoflurane exposures on rat hippocampal ultrastructure. Anesthesiology. 2015;122:87–95.

    Article  CAS  PubMed  Google Scholar 

  • Brambrink AM, Back SA, Riddle A, Gong X, Moravec MD, Dissen GA, Creeley CE, Dikranian KT, Olney JW. Isoflurane-induced apoptosis of oligodendrocytes in the neonatal primate brain. Ann Neurol. 2012;72:525–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B, Liu Y, Cai Y, Tang D, Xu S, Gao P, Yu W, Jiao Y, Li W. Hippocampus is more vulnerable to neural damages induced by repeated sevoflurane exposure in the second trimester than other brain areas. Acta Bioch Bioph Sin. 2020;52:864–74.

    Article  CAS  Google Scholar 

  • Choleris E, Galea LAM, Sohrabji F, Frick KM. Sex differences in the brain: implications for behavioral and biomedical research. Neurosci Biobehav Rev. 2018;85:126–45.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung W, Park S, Hong J, Park S, Lee S, Heo J, Kim D, Ko Y, Davidson A. Sevoflurane exposure during the neonatal period induces long-term memory impairment but not autism-like behaviors. Pediatr Anesth. 2015;25:1033–45.

    Article  Google Scholar 

  • Creeley CE, Dikranian KT, Dissen GA, Back SA, Olney JW, Brambrink AM. Isoflurane-induced apoptosis of neurons and oligodendrocytes in the fetal rhesus macaque brain. Anesthesiology. 2014;120:626–38.

    Article  CAS  PubMed  Google Scholar 

  • Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485:201–6.

    Article  CAS  PubMed  Google Scholar 

  • Graham MR, Brownell M, Chateau DG, Dragan RD, Burchill C, Fransoo RR. Neurodevelopmental assessment in kindergarten in children exposed to general anesthesia before the age of 4 years. Anesthesiology. 2016;125:667–77.

    Article  CAS  PubMed  Google Scholar 

  • Hancerliogullari G, Hancerliogullari KO, Koksalmis E. The use of multi-criteria decision making models in evaluating anesthesia method options in circumcision surgery. BMC Med Inform Decis. 2017;17:14.

    Article  Google Scholar 

  • Harrison JL. Postoperative seizures after isoflurane anesthesia. Anesth Analg. 1986;65:1235–6.

    Article  CAS  PubMed  Google Scholar 

  • Hu D, Flick RP, Zaccariello MJ, Colligan RC, Katusic SK, Schroeder DR, Hanson AC, Buenvenida SL, Gleich SJ, Wilder RT, et al. Association between exposure of young children to procedures requiring general anesthesia and learning and behavioral outcomes in a population-based birth cohort. Anesthesiology. 2017;127:227–40.

    Article  PubMed  Google Scholar 

  • Jevtovic-Todorovic V, Hartman RE, Izumi Y, Benshoff ND, Dikranian K, Zorumski CF, Olney JW, Wozniak DF. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci. 2003;23:876–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ju, X., Ryu, M.J., Cui, J., Lee, Y., Park, S., Hong, B., Yoo, S., Lee, W.H., Shin, Y.S., and Yoon, S., et al. (2020). The mTOR inhibitor rapamycin prevents general anesthesia-induced changes in synaptic transmission and mitochondrial respiration in late postnatal mice. Front Cell Neurosci 14.

  • Ko WR, Liaw YP, Huang JY, Zhao DH, Chang HC, Ko PC, Jan SR, Nfor ON, Chiang YC, Lin LY. Exposure to general anesthesia in early life and the risk of attention deficit/hyperactivity disorder development: a nationwide, retrospective matched-cohort study. Paediatr Anaesth. 2014;24:741–8.

    Article  PubMed  Google Scholar 

  • Li, M., Zhao, X., Wang, W., Shi, H., Pan, Q., Lu, Z., Perez, S.P., Suganthan, R., He, C., and Bjørås, M., et al. (2018). Ythdf2-mediated m6A mRNA clearance modulates neural development in mice. Genome Biol 19

  • Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, et al. A METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014;10:93–5.

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Wu X, Dong Y, Xu Z, Zhang Y, Xie Z. Anesthetic sevoflurane causes neurotoxicity differently in neonatal naïve and Alzheimer disease transgenic mice. Anesthesiology (philadelphia). 2010;112:1404–16.

    Article  CAS  Google Scholar 

  • Ma C, Chang M, Lv H, Zhang Z, Zhang W, He X, Wu G, Zhao S, Zhang Y, Wang D, et al. RNA m6A methylation participates in regulation of postnatal development of the mouse cerebellum. Genome Biol. 2018a;19:68.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma, C., Chang, M., Lv, H., Zhang, Z., Zhang, W., He, X., Wu, G., Zhao, S., Zhang, Y., and Wang, D., et al. (2018b). RNA m6A methylation participates in regulation of postnatal development of the mouse cerebellum. Genome Biol 19.

  • Mary Ellen M, Graaff JCD, Liam D, Nicola D, Davinia W, Graham B, Anneke G, Robyn S, Hunt RW, Sheppard SJ. Neurodevelopmental outcome at 5 years of age after general anaesthesia or awake-regional anaesthesia in infancy (GAS): an international, multicentre, randomised, controlled equivalence trial. Lancet. 2019;393:664–77.

    Article  Google Scholar 

  • Miedel CJ, Patton JM, Miedel AN, Miedel ES, Levenson JM. Assessment of spontaneous alternation, novel object recognition and limb clasping in transgenic mouse models of amyloid-β; and Tau neuropathology. J Vis Exp. 2017;123:e55523.

  • Mintz CD, Barrett KMS, Smith SC, Benson DL, Harrison NL. Anesthetics interfere with axon guidance in developing mouse neocortical neurons in vitro via a γ-aminobutyric acid type A receptor mechanism. Anesthesiology (philadelphia). 2013;118:825–33.

    Article  CAS  Google Scholar 

  • Mohammed AZ, Du HX, Song HL, Gong WM, Ning B, Jia TH. Comparative proteomes change and possible role in different pathways of microRNA-21a-5p in a mouse model of spinal cord injury. Neural Regen Res. 2020;15:1102–10.

    Article  CAS  PubMed  Google Scholar 

  • Molosh AI, Johnson PL, Spence JP, Arendt D, Federici LM, Bernabe C, Janasik SP, Segu ZM, Khanna R, Goswami C, et al. Social learning and amygdala disruptions in Nf1 mice are rescued by blocking p21-activated kinase. Nat Neurosci. 2014;17:1583–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA modifications in gene expression regulation. Cell (cambridge). 2017;169:1187–200.

    Article  CAS  PubMed  Google Scholar 

  • Satomoto M, Satoh Y, Terui K, Miyao H, Takishima K, Ito M, Imaki J. Neonatal exposure to sevoflurane induces abnormal social behaviors and deficits in fear conditioning in mice. Anesthesiology (philadelphia). 2009;110:628–37.

    Article  CAS  Google Scholar 

  • Schaefer ML, Wang M, Perez PJ, Coca Peralta W, Xu J, Johns RA. Nitric oxide donor prevents neonatal isoflurane-induced impairments in synaptic plasticity and memory. Anesthesiology. 2019;130:247–62.

    Article  CAS  PubMed  Google Scholar 

  • Schuster S, Rivalan M, Strauss U, Stoenica L, Trimbuch T, Rademacher N, Parthasarathy S, Lajko D, Rosenmund C, Shoichet SA, et al. NOMA-GAP/ARHGAP33 regulates synapse development and autistic-like behavior in the mouse. Mol Psychiatry. 2015;20:1120–31.

    Article  CAS  PubMed  Google Scholar 

  • Seibenhener ML, Wooten MC. Use of the open field maze to measure locomotor and anxiety-like behavior in mice. J Vis Exp. 2015;96:e52434.

  • Servick K. Biomedical Research. Researchers struggle to gauge risks of childhood anesthesia. Science. 2014;346:1161–2.

    Article  CAS  PubMed  Google Scholar 

  • Seubert CN, Zhu W, Pavlinec C, Gravenstein N, Martynyuk AE. Developmental effects of neonatal isoflurane and sevoflurane exposure in rats. Anesthesiology (philadelphia). 2013;119:358–64.

    Article  CAS  Google Scholar 

  • Shin S, Pribiag H, Lilascharoen V, Knowland D, Wang X, Lim BK. Drd3 signaling in the lateral septum mediates early life stress-induced social dysfunction. Neuron. 2018;97:195–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, S., Meng, X., Xia, Z., Liu, H., Zhang, J., Chen, Q., Liu, H., Ji, F., and Peng, K. (2019). Cognitive impairment and transcriptomic profile in hippocampus of young mice after multiple neonatal exposures to sevoflurane. Aging (Albany, NY.) 11, 8386–8417.

  • Stratmann G, May LDV, Sall JW, Alvi RS, Bell JS, Ormerod BK, Rau V, Hilton JF, Dai R, Lee MT, et al. Effect of hypercarbia and isoflurane on brain cell death and neurocognitive dysfunction in 7-day-old rats. Anesthesiology (philadelphia). 2009;110:849–61.

    Article  CAS  Google Scholar 

  • Sun LS, Li G, Miller TLK, Salorio C, Byrne MW, Bellinger DC, Ing C, Park R, Radcliffe J, Hays SR, et al. Association between a single general anesthesia exposure before age 36 months and neurocognitive outcomes in later childhood. JAMA. 2016;315:2312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vutskits L, Xie Z. Lasting impact of general anaesthesia on the brain: mechanisms and relevance. Nat Rev Neurosci. 2016;17:705–17.

    Article  CAS  PubMed  Google Scholar 

  • Warner DO, Zaccariello MJ, Katusic SK, Schroeder DR, Hanson AC, Schulte PJ, Buenvenida SL, Gleich SJ, Wilder RT, Sprung J, et al. Neuropsychological and behavioral outcomes after exposure of young children to procedures requiring general anesthesia. Anesthesiology. 2018;129:89–105.

    Article  PubMed  Google Scholar 

  • Yoon K, Ringeling FR, Vissers C, Jacob F, Pokrass M, Jimenez-Cyrus D, Su Y, Kim N, Zhu Y, Zheng L, et al. Temporal control of mammalian cortical neurogenesis by m6A methylation. Cell. 2017;171:877–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou B, Chen L, Liao P, Huang L, Chen Z, Liao D, Yang L, Wang J, Yu G, Wang L, et al. Astroglial dysfunctions drive aberrant synaptogenesis and social behavioral deficits in mice with neonatal exposure to lengthy general anesthesia. PLOS Biol. 2019;17:e3000086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81971060, 81401279) and the Natural Science Foundation of Hubei Province of China (2020CFB342).

Author information

Authors and Affiliations

Authors

Contributions

CK, WJ conceived and designed the experiments. YW conducted the study and wrote the manuscript. CS, SW, and MP helped conduct the study and collect the data. XX, YL, XL, and DS helped conduct the study. ZY helped to analyze the data and revise the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Weiling Jin or Changbin Ke.

Ethics declarations

Ethics approval and consent to participate

Ethical approval was obtained from the medical/animal ethical committee of the HuBei University of Medicine (China). Informed consent was obtained where applicable.

Consent for publication

All authors have read and agreed to the published version of the manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Keywords

• Neonatal exposure to isoflurane or sevoflurane caused sociability deficits at the juvenile age.

• Neonatal exposure to isoflurane or sevoflurane induced m6A and proteome modification.

• Neonatal exposure to sevoflurane disturbed synaptogenesis.

Supplementary Information

Below is the link to the electronic supplementary material.

10565_2022_9701_MOESM1_ESM.jpg

Supplementary file1 The distribution of m6A peak in the genome and the remarkablely alteredm6A peaks after repeated neonatal exposure to isoflurane or sevoflurane. (A) Thepercentage of m6A peaks identified in the genome regions. (B and C) Heatmapsshowing the enrichment of m6A peak (red, log2FC > 1; blue, log2FC < -1) and itsannotated genes in the isoflurane (B) and sevoflurane (C) groups. FC, fold change. (JPG 2323 KB)

10565_2022_9701_MOESM2_ESM.jpg

Supplementary file2 m6A installation protein expression in the brainThe expression of m6A installation protein in the cortex were examined using westernblot of normal, isoflurane and sevoflurane exposure mice. Quantitative analysis ofbands showed on the right (compare to normal, * p<0.05). (JPG 2059 KB)

10565_2022_9701_MOESM3_ESM.jpg

Supplementary file3 Protein expression in the cerebral cortex and hippocampus after repeatedneonatal exposure to isoflurane or sevoflurane. (A and A’) Volcano plot (A) andheatmap (A’) of the differentially expressed proteins in the cerebral cortex betweenisoflurane and control. (B and B’) Volcano plot (B) and heatmap (B’) of thedifferentially expressed proteins in the cerebral cortex between sevoflurane and control.(C and C’) Volcano plot (C) and heatmap (C’) of the differentially expressed proteinsin the hippocampus between isoflurane and control. (D and D’) Volcano plot (D) andheatmap (D’) of the differentially expressed proteins in the hippocampus betweensevoflurane and control. Red dots in volcano plot represent the significantly increasedproteins (fold change > 1.5, p < 0.05), blue dots in volcano plot represent thesignificantly decreased proteins (fold change < 0.67, p < 0.05). (JPG 3902 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Yang, Z., Su, S. et al. Differential epitranscriptome and proteome modulation in the brain of neonatal mice exposed to isoflurane or sevoflurane. Cell Biol Toxicol 39, 2133–2148 (2023). https://doi.org/10.1007/s10565-022-09701-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-022-09701-9

Keywords

Navigation