Skip to main content
Log in

Small-angle X-ray scattering and structural modeling of full-length: cellobiohydrolase I from Trichoderma harzianum

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellobiohydrolases hydrolyze cellulose releasing cellobiose units. They are very important for a number of biotechnological applications, such as, for example, production of cellulosic ethanol and cotton fiber processing. The Trichoderma cellobiohydrolase I (CBH1 or Cel7A) is an industrially important exocellulase. It exhibits a typical two domain architecture, with a small C-terminal cellulose-binding domain and a large N-terminal catalytic core domain, connected by an O-glycosylated linker peptide. The mechanism by which the linker mediates the concerted action of the two domains remains a conundrum. Here, we probe the protein shape and domain organization of the CBH1 of Trichoderma harzianum (ThCel7A) by small angle X-ray scattering (SAXS) and structural modeling. Our SAXS data shows that ThCel7A linker is partially-extended in solution. Structural modeling suggests that this linker conformation is stabilized by inter- and intra-molecular interactions involving the linker peptide and its O-glycosylations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abuja P, Pilz I, Claeyssens M, Tomme P (1988) Domain-structure of cellobiohydrolase-II as studied by small-angle X-ray-scattering—close resemblance to cellobiohydrolase-I. Biochem Biophys Res Commun 156(1):180–185. doi:10.1016/S0006-291X(88)80821-0

    Article  CAS  Google Scholar 

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22(2):195–201. doi:10.1093/bioinformatics/bti770

    Article  CAS  Google Scholar 

  • Beckham GT, Bomble YJ, Matthews JF, Taylor CB, Resch MG, Yarbrough JM, Decker SR, Bu L, Zhao X, McCabe C, Wohlert J, Bergenstrahle M, Brady JW, Adney WS, Himmel ME, Crowley MF (2010) The O-glycosylated linker from the Trichoderma reesei family 7 cellulase is a flexible. Disordered Protein Biophys J 99(11):3773–3781. doi:10.1016/j.bpj.2010.10.032

    Article  CAS  Google Scholar 

  • Bradford M (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72(1–2):248–254. doi:10.1006/abio.1976.9999

    Article  CAS  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238. doi:10.1093/nar/gkn663

    Article  CAS  Google Scholar 

  • Case DA, Darden TA, Chealtham TE, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM et al (2010) Amber 11, Single edn. Universtity of California Press, Berkeley

    Google Scholar 

  • Cornell W, Cieplak P, Bayly C, Gould I, Merz K, Ferguson D, Spellmeyer D, Fox T, Caldwell J, Kollman P (1996) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules (vol 117, pg 5179, 1995). J Am Chem Soc 118(9):2309. doi:10.1021/ja955032e

    Article  CAS  Google Scholar 

  • Divine M, Stahlberg J, Reinikanen T, Ruohonen L, Petterson G, Knowles JK, Teeri TT, Jones TA (1994) The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science 265(5171):524–528

    Google Scholar 

  • Fischer H, de Oliveira Neto M, Napolitano HB, Polikarpov I, Craievich AF (2010) Determination of the molecular weight of proteins in solution from a single small-angle X-ray scattering measurement on a relative scale. J Appl Crystallogr 43(Part 1):101–109. doi:10.1107/S0021889809043076

    Article  CAS  Google Scholar 

  • Guinier A, Fornet G (1995) Small angle scattering of X-rays, 1st edn. Wiley, London

    Google Scholar 

  • Hammersley A, Svensson S, Hanfland M, Fitch A, Hausermann D (1996) Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Pressure Res 14(4–6):235–248. doi:10.1080/08957959608201408

    Article  Google Scholar 

  • Hammersley A, Brown K, Burmeister W, Claustre L, Gonzalez A, McSweeney S, Mitchell E, Moy J, Svensson S, Thompson A (1997) Calibration and application of an X-ray image intensifier/charge-coupled device detector for monochromatic macromolecular crystallography. J Synchrot Radiat 4(Part 2):67–77. doi:10.1107/S0909049596015087

    Article  CAS  Google Scholar 

  • Harrison M, Wathugala I, Tenkanen M, Packer N, Nevalainen K (2002) Glycosylation of acetylxylan esterase from Trichoderma reesei. Glycobiology 12(4):291–298. doi:10.1093/glycob/12.4.291

    Article  CAS  Google Scholar 

  • Hayn M, Esterbauer H (1985) Separation and partial characterization of Trichoderma-reesei cellulase by fast chromatofocusing. J Chromat 329(3):379–387. doi:10.1016/S0021-9673(01)81944-0

    Article  CAS  Google Scholar 

  • Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VGH (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:45. doi:10.1186/1754-6834-5-45

    Article  CAS  Google Scholar 

  • Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins 65(3):712–725. doi:10.1002/prot.21123

    Article  CAS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38. doi:10.1016/0263-7855(96)00018-5

    Article  CAS  Google Scholar 

  • Igarashi K, Koivula A, Wada M, Kimura S, Penttila M, Samejima M (2009) High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase i on crystalline cellulose. J Biol Chem 284(52):36186–36190. doi:10.1074/jbc.M109.034611

    Article  CAS  Google Scholar 

  • Jorgensen W, Chandrasekhar J, Madura J, Impey R, Klein M (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935. doi:10.1063/1.445869

    Article  CAS  Google Scholar 

  • Kalra M, Sandhu D (1986) Cellulase production and its localization in Trichoderma-harzianum. Folia Microbiol 31(4):303–308. doi:10.1007/BF02926955

    Article  CAS  Google Scholar 

  • Kirschner KN, Yongye AB, Tschampel SM, Gonzalez-Outeirino J, Daniels CR, Foley BL, Woods RJ (2008) GLYCAM06: a generalizable biomolecular force field, carbohydrates. J Comput Chem 29(4):622–655. doi:10.1002/jcc.20820

    Article  CAS  Google Scholar 

  • Kozin MB, Svergun DI (2001) Automated matching of highandlow-resolution structural models. J Appl Crystallogr 34:33–41

    Article  CAS  Google Scholar 

  • Kraulis P, Clore G, Nilges M, Jones T, Pettersson G, Knowles J, Gronenborn A (1989) Determination of the 3-dimensional solution structure of the c-terminal domain of Cellobiohydrolase-I from Trichoderma-reesei - a study using nuclear magnetic-resonance and hybrid distance geometry dynamical simulated annealing. Biochemistry 28(18):7241–7257. doi:10.1021/bi00444a016

    Article  CAS  Google Scholar 

  • Laemmli U (1970) Cleavage of structural proteins during assembly of head of bacteriophage-T4. Nature 227(5259):680. doi:10.1038/227680a0

    Article  CAS  Google Scholar 

  • Lee H, Brown R (1997) A comparative structural characterization of two cellobiohydrolases from Trichoderma reesei: a high resolution electron microscopy study. J Biotechnol 57(1–3):127–136. doi:10.1016/S0168-1656(97)00111-9

    Article  CAS  Google Scholar 

  • Li Xh, Hj Yang, Roy B, Wang D, Wf Yue, Lj Jiang, Park EY, Yg Miao (2009) The most stirring technology in future: cellulase enzyme and biomass utilization. Afr J Biotechnol 8(11):2418–2422

    CAS  Google Scholar 

  • Matthews J, Skopec C, Mason P, Zuccato P, Torget R, Sugiyama J, Himmel M, Brady J (2006) Computer simulation studies of microcrystalline cellulose I beta. Carbohydr Res 341(1):138–152. doi:10.1016/j.carres.2005.09.028

    Article  CAS  Google Scholar 

  • Mattinen M, Kontteli M, Kerovuo J, Linder M, Annila A, Lindeberg G, Reinikainen T, Drakenberg T (1997) Three-dimensional structures of three engineered cellulose-binding domains of cellobiohydrolase I from Trichoderma reesei. Protein Sci 6(2):294–303

    Article  CAS  Google Scholar 

  • Momeni MH, Payne CM, Hansson H, Mikkelsen NE, Svedberg J, Engstrom A, Sandgren M, Beckham GT, Stahlberg J (2013) Structural, biochemical, and computational characterization of the glycoside hydrolase family 7 cellobiohydrolase of the tree-killing fungus Heterobasidion irregulare. J Biol Chem 22(8):5861–5872. doi:10.1074/jbc.M112.440891

    Google Scholar 

  • Nummi M, Nikupaavola M, Lappalainen A, Enari T, Raunio V (1983) Cellobiohydrolase from Trichoderma-reesei. Biochem J 215(3):677–683

    CAS  Google Scholar 

  • Petoukhov M, Svergun D (2005) Global rigid body modeling of macromolecular complexes against small-angle scattering data. Biophys J 89(Part 2):1237–1250. doi:10.1529/biophysj.105.064154

    Article  CAS  Google Scholar 

  • Phillips J, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802. doi:10.1002/jcc.20289

    Article  CAS  Google Scholar 

  • Pilz I, Schwarz E, Kilburn D, Miller R, Warren R, Gilkes N (1990) The tertiary structure of a bacterial cellulase determined by small-angle X-ray-scattering analysis. Biochem J 271(1):277–280

    CAS  Google Scholar 

  • Pingali SV, O’Neill HM, McGaughey J, Urban VS, Rempe CS, Petridis L, Smith JC, Evans BR, Heller WT (2011) Small angle neutron scattering reveals pH-dependent conformational changes in Trichoderma reesei cellobiohydrolase I implications for enzymatic activity. J Biol Chem 286(37):32801–32809. doi:10.1074/jbc.M111.263004

    Article  CAS  Google Scholar 

  • Receveur V, Czjzek M, Schulein M, Panine P, Henrissat B (2002) Dimension, shape, and conformational flexibility of a two domain fungal cellulase in solution probed by small angle X-ray scattering. J Biol Chem 277(43):40887–40892. doi:10.1074/jbc.M205404200

    Article  CAS  Google Scholar 

  • Roussos S, Raimbault M (1982) Cellulose hydrolysis by fungi. 1. Screening of cellulolytic strains. Ann Microb B133(3):455–464

    Google Scholar 

  • Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5(4):725–738. doi:10.1038/nprot.2010.5

    Article  CAS  Google Scholar 

  • Schmuck M, Pilz I, Hayn M, Esterbauer H (1986) Investigation of cellobiohydrolase from Trichoderma-reesei by small-angle X-ray-scattering. Biotechnol Lett 8(6):397–402. doi:10.1007/BF01026739

    Article  CAS  Google Scholar 

  • Seeber M, Cecchini M, Rao F, Settanni G, Caflisch A (2007) Wordom: a program for efficient analysis of molecular dynamics simulations. Bioinformatics 23(19):2625–2627. doi:10.1093/bioinformatics/btm378

    Article  CAS  Google Scholar 

  • Serpa VI, Polikarpov I (2011) Enzymes in bioenergy. In: Buckeridge MS, Goldman GHH (eds) Routes to cellulosic ethanol—part II. Springer, New York. doi:10.1007/978-0-387-92740-4_7

    Google Scholar 

  • Srisodsuk M, Reinikainen T, Penttila M, Teeri T (1993) Role of the interdomain linker peptide of Trichoderma-reesei cellobiohydrolase-I in its interaction with crystalline cellulose. J Biol Chem 268(28):20756–20761

    CAS  Google Scholar 

  • Stahlberg J, Johansson G, Pettersson G (1991) A new model for enzymatic-hydrolysis of cellulose based on the 2-domain structure of cellobiohydrolase-I. Bio-Technology 9(3):286–290. doi:10.1038/nbt0391-286

    Article  Google Scholar 

  • Stals I, Sandra K, Geysens S, Contreras R, Van Beeumen J, Claeyssens M (2004) Factors influencing glycosylation of Trichoderma reesei cellulases. I: postsecretorial changes of the O- and N-glycosylation pattern of Cel7A. Glycobiology 14(8):713–724. doi:10.1093/glycob/cwh080

    Article  CAS  Google Scholar 

  • Svergun D (1991) Mathematical-methods in small-angle scattering data-analysis. J Appl Crystallogr 24(Part 5):485–492. doi:10.1107/S0021889891001280

    Article  CAS  Google Scholar 

  • Svergun D (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J 76(6):2879–2886. doi:10.1016/S0006-495(99)77443-6

    Article  CAS  Google Scholar 

  • Svergun D, Barberato C, Koch M (1995) CRYSOL—a program to evaluate x-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Crystallogr 28(Part 6):768–773. doi:10.1107/S0021889895007047

    Article  CAS  Google Scholar 

  • Svergun D, Petoukhov M, Koch M (2001) Determination of domain structure of proteins from X-ray solution scattering. Biophys J 80(6):2946–2953

    Article  CAS  Google Scholar 

  • Textor LC, Colussi F, Silveira RL, Serpa V, Mello BL, Muniz JRC, Squina FM, Pereira N Jr, Skaf MS, Polikarpov I (2012) FEBS J 280(1):56–69. doi:10.1111/febs.12049

    Article  Google Scholar 

  • Ting CL, Makarov DE, Wang ZG (2009) A kinetic model for the enzymatic action of cellulase. J Phys Chem B 113(14):4970–4977. doi:10.1021/jp810625k

    Article  CAS  Google Scholar 

  • Vangunsteren W, Berendsen H (1977) Algorithms for macromolecular dynamics and constraint dynamics. Mol Phys 34(5):1311–1327. doi:10.1080/00268977700102571

    Article  CAS  Google Scholar 

  • Vantilbeurgh H, Tomme P, Claeyssens M, Bhikhabhai R, Pettersson G (1986) Limited proteolysis of the cellobiohydrolase I from Trichoderma-reesei—separation of functional domains. FEBS Lett 204(2):223–227. doi:10.1016/0014-5793(86)80816-X

    Article  CAS  Google Scholar 

  • Violot S, Aghajari N, Czjzek M, Feller G, Sonan G, Gouet P, Gerday C, Haser R, Receveur-Brechot V (2005) Structure of a full length psychrophilic cellulase from Pseudoalteromonas haloplanktis revealed by X-ray diffraction and small angle X-ray scattering. J Mol Biol 348(5):1211–1224. doi:10.1016/j.jmb.2005.03.026

    Article  CAS  Google Scholar 

  • Zhang Y (2007) Template-based modeling and free modeling by I-TASSER in CASP7. Proteins 69(8):108–117. doi:10.1002/prot.21702

    Article  CAS  Google Scholar 

  • Zhong L, Xie J (2009) Investigation of the effect of glycosylation on human prion protein by molecular dynamics. J Biomol Struct Dyn 26(5):525–533

    Article  CAS  Google Scholar 

  • Zhong L, Matthews JF, Crowley MF, Rignall T, Talon C, Cleary JM, Walker RC, Chukkapalli G, McCabe C, Nimlos MR, Brooks CL III, Himmel ME, Brady JW (2008) Interactions of the complete cellobiohydrolase I from Trichodera reesei with microcrystalline cellulose I beta. Cellulose 15(2):261–273. doi:10.1007/s10570-007-9186-0

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) via Thematic Process 08/56255-9, grants 2008/05637-9, 2007/08706-9, 2010/16947-9, CeProBio Project (FAPESP 2009/52840-7 and CNPq 490022/2009-0) and INCT Bioetanol (FAPESP/CNPq); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). We also thank the staff of the National Synchrotron Light Laboratory (LNLS, Brazil) for access to the SAXS beamline and others facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leandro Martínez or Igor Polikarpov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 873 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lima, L.H.F., Serpa, V.I., Rosseto, F.R. et al. Small-angle X-ray scattering and structural modeling of full-length: cellobiohydrolase I from Trichoderma harzianum . Cellulose 20, 1573–1585 (2013). https://doi.org/10.1007/s10570-013-9933-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-9933-3

Keywords

Navigation