Skip to main content

Advertisement

Log in

One-pot synthesis of biofoams from castor oil and cellulose microfibers for energy absorption impact materials

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The use of renewable feedstocks in foam technology has created a worldwide demand for more sustainable materials. Castor oil is a vegetable oil, composed mainly of triricinoglycerol, a natural polyol, suitable for polyurethane foam production. In this study, castor oil and variable amounts of microcrystalline cellulose (MCC) fibers were used in a straightforward one-pot synthesis approach for the preparation of novel biofoams. The ensuing biofoams were characterized by several techniques, including attenuated total reflectance Fourier transform infrared spectroscopy, scanning electron microscopy and thermogravimetric analysis, and their mechanical performance was evaluated by compression mechanical testing and by dynamic mechanical thermal analysis. They were (semi-) flexible, with a cell-like morphology and reinforced toughness due to the use of MCC. They had a Young’s modulus varying between 0.188 and 1.06 MPa depending on the amount of MCC used and were thermally stable up to 267 °C. The properties of these novel biofoams enable them to be strong candidates for use as tough, energy-absorbing foams, advantageously prepared using renewable-based resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Avalle M, Belingardi G, Montanini R (2001) Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram. Int J Impact Eng 25:455–472

    Article  Google Scholar 

  • Belgacem MN, Gandini A (2008) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam

    Google Scholar 

  • Bellamy LJ (1958) The infra-red spectra of complex molecules, 2nd edn. Methuen, London

    Google Scholar 

  • Biermann U, Friedt W, Lang S, Lühs W, Machmüller G, Metzger J, Rüsch Gen Klaas M, Schäfer H, Schneider M (2000) New syntheses with oils and fats as renewable raw materials for the chemical industry. Angew Chem Int Ed Engl 39:2206–2224

    Article  CAS  Google Scholar 

  • Biermann U, Bornscheuer U, Meier MAR, Metzger JO, Schäfer HJ (2011) Oils and fats as renewable raw materials in chemistry. Angew Chem Int Ed Engl 50:3854–3871. doi:10.1002/anie.201002767

    Article  CAS  Google Scholar 

  • Christensen CH, Rass-Hansen J, Marsden CC, Taarning E, Egeblad K (2008) The renewable chemicals industry. ChemSusChem 1:283–289

    Article  CAS  Google Scholar 

  • Corcuera MA, Rueda L, Fernandez d’Arlas B, Arbelaiz A, Marieta C, Mondragon I, Eceiza A (2010) Microstructure and properties of polyurethanes derived from castor oil. Polym Degrad Stab 95:2175–2184

    Article  CAS  Google Scholar 

  • Fernandes SC, Freire CS, Silvestre AJ, Pascoal Neto C, Gandini A (2011) Novel materials based on chitosan and cellulose. Polym Int 60:875–882

    Article  CAS  Google Scholar 

  • Flores-Johnson EA, Li QM (2010) Indentation into polymeric foams. Int J Solids Struct 47:1987–1995

    Article  Google Scholar 

  • Okoroafor MO, Frisch and KC (1995) Introduction to foams and foam formation. In: Landrock AH (ed) Handbook of plastic foams. Types, manufacture and applications. Noyes Publications, New Jessey, pp 1–10

  • Gandini A (2008) Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules 41:9491–9504

    Article  CAS  Google Scholar 

  • Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties. Cambridge University Press, Cambridge

    Google Scholar 

  • Jankowski M, Kotełko M (2010) Dynamic compression tests of a polyurethane flexible foam as a step in modelling impact of the head to the vehicle seat head restraint. FME Trans 38:121–127

    Google Scholar 

  • Klempner D, Sendijarevi′c V (2004) Polymeric foams and foam technology, 2nd edn. Hanser, Ohio

    Google Scholar 

  • Li X, Pizzi A, Cangemi M, Fierro V, Celzard A (2012) Flexible natural tannin-based and protein-based biosourced foams. Ind Crops Prod 37:389–393

    Article  Google Scholar 

  • Lu Y, Larock RC (2009) Novel polymeric materials from vegetable oils and vinyl monomers: preparation, properties, and applications. ChemSusChem 2:136–147. doi:10.1002/cssc.200800241

    Article  CAS  Google Scholar 

  • Maiti SK, Gibson LJ, Ashby MF (1984) Deformation and energy absorption diagrams for cellular solids. Acta Metall 32:1963–1975

    Article  CAS  Google Scholar 

  • Marshall A-L, Alaimo PJ (2010) Useful products from complex starting materials: common chemicals from biomass feed stocks. Chemistry 16:4970–4980

    Article  CAS  Google Scholar 

  • Meckel W, Goyert W, Wieder W, Wussow H-G (2004) Thermoplastic polyurethane elastomers. In: Geoffrey H, Kricheldorf HR, Roderic PQ (eds) Thermoplastic elastomers, 3rd edn. Hanser, Munich, pp 15–44

    Google Scholar 

  • Miléo PC, Mulinari DR, Baptista CARP, Rocha GJM, Gonçalves AR (2011) Mechanical behaviour of polyurethane from castor oil reinforced sugarcane straw cellulose composites. Procedia Eng 10:2068–2073

    Article  Google Scholar 

  • Nichtnennung A (1983) Polyether polyol composition, useful to produce viscoelastic polyurethane foams, comprises polyether polyols with specific hydroxyl-functionality, -number and propylene oxide content, and renewable raw materials with one hydroxyl group. patent DE102008014032A1

  • Paulino M, Teixeira-Dias F (2012) On the use of polyurethane foam paddings to improve passive safety in crashworthiness applications. In: Zafar F, Sharmin E (eds) Polyurethanes. Intech, Rijeka, pp 1–15

    Google Scholar 

  • Perdomo FA, Acosta-Osorio AA, Herrera G, Vasco-Leal JF, Mosquera-Artamonov JD, Millan-Malo B, Rodriguez-Garcia ME (2013) Physicochemical characterization of seven Mexican Ricinus communis L. seeds and oil contents. Biomass Bioenerg 48:17–24

    Article  CAS  Google Scholar 

  • Plastemart (2011) Global polyurethane market to reach 9.6 mln tons by 2015. http://www.plastemart.com/Plastic-Technical-Article.asp?LiteratureID=1674&Paper=global-polyurethane-market-PU-foams-thermoplastic-elastomers. Accessed 1 Jul 2013

  • Ravey M, Pearce EM (1997) Flexible polyurethane foam. I. Thermal decomposition of a polyether-based, water-blown commercial type of flexible polyurethane foam. J Appl Polym Sci 63:47–74

    Article  CAS  Google Scholar 

  • Rodriguez-Perez MA, Álvarez-Láinez M, de Saja JA (2009) Microstructure and physical properties of open-cell polyolefin foams. J Appl Polym Sci 114:1176–1186

    Article  CAS  Google Scholar 

  • Sharma V, Kundu PP (2006) Addition polymers from natural oils—a review. Prog Polym Sci 31:983–1008

    Article  CAS  Google Scholar 

  • Sharma V, Kundu PP (2008) Condensation polymers from natural oils. Prog Polym Sci 33:1199–1215

    Article  CAS  Google Scholar 

  • Suresh KI (2013) Rigid polyurethane foams from cardanol: synthesis, structural characterization, and evaluation of polyol and foam properties. ACS Sustain Chem Eng 1:232–242

    Article  CAS  Google Scholar 

  • Svagan AJ, Berglund LA, Jensen P (2011) Cellulose nanocomposite biopolymer foam–hierarchical structure effects on energy absorption. ACS Appl Mater Interfaces 3:1411–1417

    Article  CAS  Google Scholar 

  • Tanaka R, Hirose S, Hatakeyama H (2008) Preparation and characterization of polyurethane foams using a palm oil-based polyol. Bioresour Technol 99:3810–3816

    Article  CAS  Google Scholar 

  • Wik VM, Aranguren MI, Mosiewicki MA (2011) Castor oil-based polyurethanes containing cellulose nanocrystals. Polym Eng Sci 51:1389–1396

    Article  CAS  Google Scholar 

  • Wolska A, Goździkiewicz M, Ryszkowska J (2012) Thermal and mechanical behaviour of flexible polyurethane foams modified with graphite and phosphorous fillers. J Mater Sci 47:5627–5634

    Article  CAS  Google Scholar 

Download references

Acknowledgments

FCT is gratefully acknowledged for two postdoctorate grants to A.F. Sousa (SFRH/BPD/73383/2010) and R.J.B. Pinto (SFRH/BPD/89982/2012) and for a fellowship to M. Matos (BI/UI89/5419/2011). C.S.R. Freire also acknowledges FCT/MCTES for a research grant under the program 'Investigador FCT 2012'. The authors wish to thank to PNRC of FCT for analytical instrumentation support (POCI 2010, FEDER, REEQ/515/CTM/2005 POCI) and for funding CICECO (PEst-C/CTM/LA0011/2013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andreia F. Sousa or Armando J. D. Silvestre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sousa, A.F., Matos, M., Pinto, R.J.B. et al. One-pot synthesis of biofoams from castor oil and cellulose microfibers for energy absorption impact materials. Cellulose 21, 1723–1733 (2014). https://doi.org/10.1007/s10570-014-0229-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0229-z

Keywords

Navigation