Skip to main content
Log in

Dissolution of enzyme-treated cellulose using freezing–thawing method and the properties of fibres regenerated from the solution

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The rapid coagulation of NaOH-based cellulose solution during the wet spinning process leads to a low stretching ratio and, consequently, the low mechanical properties of the fibres. The aim of this work was to slow down the coagulation by replacing the sulphuric acid spin bath with an acetic acid bath. The spin dope was prepared by dissolving the enzyme-treated dissolving pulp in aqueous sodium zincate using a freezing–thawing method. The optimal zinc oxide and sodium hydroxide concentrations were studied first. The most thermally stable cellulose solution contained 6.5 wt% NaOH and 1.3 wt% ZnO with 6 wt% enzyme-treated dissolving pulp. The spin dope was prepared accordingly. Coagulation of the cellulose solution slowed down in the acetic acid bath, resulting in a significantly higher stretching ratio for the fibres than with the sulphuric acid bath. However, the acetic acid spun fibres shrunk strongly during drying, and the possibly aligned order of the molecular chains due to the high stretch was partly lost. As a consequence, the high stretch was not transferred to high tenacity of the fibres in this study. However, the result suggests attractive potential to develop processing conditions to increase fibre tenacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Barnes HA (1997) Thixotropy—a review. J Non-Newton Fluid Mech 70:1–30

    Article  CAS  Google Scholar 

  • Bernfeld P (1955) Amylases, α; and β. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 1. Academic, NY, pp 149–158

    Google Scholar 

  • Cai J, Zhang L (2006) Unique gelation behaviour of cellulose in NaOH/urea aqueous solution. Biomacromolecules 7:183–189

    Article  CAS  Google Scholar 

  • Cai J, Zhang L, Zhou J, Li H, Chen H, Jin H (2004) Novel fibers prepared from cellulose in NaOH/urea aqueous solution. Macromol Rapid Commun 25:1558–1562

    Article  CAS  Google Scholar 

  • Cai J, Zhang L, Zhou J, Qi H, Chen H, Kondo T, Chen X, Chu B (2007) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19:821–825

    Article  CAS  Google Scholar 

  • Cai J, Zhang L, Liu S, Liu Y, Xu X, Chen X, Chu B, Guo X, Xu J, Cheng H, Han C, Kuga S (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 41:9345–9351

    Article  CAS  Google Scholar 

  • Cao Y, Tan H (2002a) Effects of cellulase on the modification of cellulose. Carbohydr Res 337:1291–1296

    Article  CAS  Google Scholar 

  • Cao Y, Tan H (2002b) The properties of enzyme-hydrolyzed cellulose in aqueous sodium hydroxide. Carbohydr Res 337:1453–1457

    Article  CAS  Google Scholar 

  • Cao Y, Tan H (2006) Improvement of alkali solubility of cellulose with enzymatic treatment. Appl Microbiol Biotechnol 70:176–182

    Article  CAS  Google Scholar 

  • Carillo F, Colom X, Suñol JJ, Saurina J (2004) Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres. Eur Polym J 40:2229–2234

    Article  Google Scholar 

  • Chen X, Burger C, Fang D, Ruan D, Zhang L, Hsiao BS, Chu B (2006) X-ray studies of regenerated cellulose fibers wet spun from cotton linter pulp in NaOH/thiourea aqueous solutions. Polymer 47:2839–2848

    Article  CAS  Google Scholar 

  • Chen X, Burger C, Wan F, Zhang J, Rong L, Hsiao BS, Chu B, Cai J, Zhang L (2007) Structure study of cellulose fibers wet-spun from environmentally friendly NaOH/urea aqueous solutions. Biomacromolecules 8:1918–1926

    Article  CAS  Google Scholar 

  • Colom X, Carillo F (2002) Crystallinity changes in lyocell and viscose-type fibres by caustic treatment. Eur Polym J 38:2225–2230

    Article  CAS  Google Scholar 

  • Davidson GF (1934) The dissolution of chemically modified cotton cellulose in alkaline solutions. Part I. In solutions of sodium hydroxide, particularly at temperatures below the normal. J Text Inst 25:T174–T196

    Article  CAS  Google Scholar 

  • Davidson GF (1937) The dissolution of chemically modified cotton cellulose in alkaline solutions. Part 3. In solutions of sodium and potassium hydroxide containing dissolved zinc, beryllium and aluminium oxides. J Text Inst 28:T27–T44

    Article  CAS  Google Scholar 

  • Egal M, Budtova T, Navard P (2007) Structure of aqueous solutions of microcrystalline cellulose/sodium hydroxide below 0 °C and the limit of cellulose dissolution. Biomacromolecules 8:2282–2287

    Article  CAS  Google Scholar 

  • Fink H-P, Weigel P, Purz H, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524

    Article  CAS  Google Scholar 

  • Forziati FH, Rowen JW (1951) Changes in crystalline structure on the infrared absorption spectrum of cellulose. J Res Natl Bur Stand 46:38–42

    Article  CAS  Google Scholar 

  • Fu F, Zhou J, Zhou X, Zhang L, Li D, Kondo T (2014a) Green method for production of cellulose multifilament from cellulose carbamate on a pilot scale. ACS Sustain Chem Eng 2:2363–2370

    Article  CAS  Google Scholar 

  • Fu F, Yang Q, Zhou J, Hu H, Jia B, Zhang L (2014b) Structure and properties of regenerated cellulose filaments prepared from cellulose carbamate–NaOH/ZnO aqueous solution. ACS Sustain Chem Eng 2:2604–2612

    Article  CAS  Google Scholar 

  • Götze K (1967) Chemiefasern nach dem Viskoseverfahren. Springer, Berlin

    Book  Google Scholar 

  • Grönqvist S, Hakala TK, Kamppuri T, Vehviläinen M, Hänninen T, Liitiä T, Maloney T, Suurnäkki A (2014) Fibre porosity development of dissolving pulp during mechanical and enzymatic processing. Cellulose 21:3667–3676

    Article  Google Scholar 

  • Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–319

    Article  CAS  Google Scholar 

  • Jin H, Zha C, Gu L (2007) Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution. Carbohydr Res 342:851–858

    Article  CAS  Google Scholar 

  • Jurbergs KA (1960) Morphological properties of cotton and wood fibers. Tappi 43:561–568

    CAS  Google Scholar 

  • Kamide K, Okajima K, Kowasaka K (1992) Dissolution of natural cellulose into aqueous alkali solution: role of super-molecular structure of cellulose. Polym J 24:71–86

    Article  CAS  Google Scholar 

  • Kihlman M, Medronho BF, Romano AL, Germgård U, Lindman B (2013) Cellulose dissolution in an alkali based solvent: influence of additives and pretreatments. J Braz Chem Soc 24:295–303

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Kotek R (2007) Regenerated Cellulose Fibers. In: Lewin M (ed) Handbook of Fiber Chemistry, vol 3. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Krässig HA (1993) Cellulose: structure, accessibility and reactivity. Gordon and Breach Science, Switzerland

    Google Scholar 

  • Le Moigne N, Navard P (2010) Dissolution mechanism of wood cellulose fibres in NaOH–water. Cellulose 17:31–45

    Article  Google Scholar 

  • Lilienfeld L (1930) Cellulose solutions and process for making same. US 1771461

  • Lindman B, Karlström G (2009) Nonionic polymers and surfactants: temperature anomalies revisited. C R Chimie 12:121–128

    Article  CAS  Google Scholar 

  • Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81

    Article  CAS  Google Scholar 

  • Maloney TC (2015) Thermoporosimetry of hard (silica) and soft (cellulosic) materials by isothermal step melting. J Therm Anal Calorim doi:10.1007/s10973-015-4592-2

  • Maloney TC, Paulapuro H (2001) Thermoporosimetry of pulp fibers. In: The fundamentals of papermaking materials, transactions of the 12th fundamental symposium held at Oxford vol 2. pp 897–926

  • Marsh JT, Wood FC (1942) An introduction to the chemistry of cellulose, 2nd edn. Chapman & Hall, London

    Google Scholar 

  • Mathur NK (2011) Rheology of hydrocolloids in industrial galactomannan polysaccharides. CRC Press, Boca Raton eBook ISBN: 978-1-4398-4629-2

    Book  Google Scholar 

  • McGarry WJ, Priest MH (1968) Viscose Rayon tire yarn. In: Mark HF, Atlas SM, Cernia E (eds) Man-made fibers science and technology, 2nd edn. Interscience, New York, pp 42–80

    Google Scholar 

  • Moncrieff RW (1970) Man-made fibres, 5th edn. Heywood Books, The Butterworth Group, England

    Google Scholar 

  • Morton WE, Hearle JWS (1993) Physical properties of textile fibres, 3rd edn. The Textile Institute, England

    Google Scholar 

  • Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in cellulose I and II. J Appl Polym Sci 8:1325–1341

    Article  CAS  Google Scholar 

  • Oh SY, Yoo DI, Shin Y, Seo G (2004) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340:417–428

    Article  Google Scholar 

  • Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391

    Article  CAS  Google Scholar 

  • Pal R (2006) Introduction to linear viscoelasticity in rheology of particulate dispersions and composites. CRC Press, Boca Raton eBook ISBN: 978-1-4200-1604-8

    Book  Google Scholar 

  • Qi H, Cai J, Zhang L, Nishiyama Y, Rattaz A (2008a) Influence of finishing oil on structure and properties of multi-filament fibers from cellulose dope in NaOH/urea aqueous solution. Cellulose 15:81–89

    Article  CAS  Google Scholar 

  • Qi H, Chang C, Zhang L (2008b) Effects of temperature and molecular weight on dissolution of cellulose in NaOH/urea aqueous solution. Cellulose 15:779–787

    Article  CAS  Google Scholar 

  • Qin J-J, Gu J, Chung T-S (2001) Effect of wet and dry-jet wet spinning on the shear-induced orientation during the formation of ultrafiltration hollow fiber membrane. J Membr Sci 182:57–75

    Article  CAS  Google Scholar 

  • Radishevskii MB, Serkov AT (2005) Coagulation mechanism in wet spinning of fibres. Fibre Chem 37(4):266–271

    Article  CAS  Google Scholar 

  • Rahkamo L, Siika-Aho M, Vehviläinen M, Dolk M, Viikari L, Nousiainen P, Buchert J (1996) Modification of hardwood dissolving pulp with purified Trichoderma reesei cellulases. Cellulose 3:153–163

    Article  CAS  Google Scholar 

  • Rahkamo L, Vehviläinen M, Viikari L, Nousiainen P and Buchert J (1998) Modification of dissolving pulp by hydrolysis with cellulose enzymes. In: Eriksson L-EL, Cavaco-Paulo A (eds) Enzyme Applications in Fibre Processing. ACS Symp Ser 687. American Chemical Society: Washington, pp 318–327

  • Ritzoulis C (2013) Introduction to the physical chemistry of foods; Chapter 7 Rheology, pp 157–172. doi:10.1201/b14705-8. ISBN: 978-1-4665-1176-7

  • Röder T, Moosbauer J, Fasching M, Bohn A, Fink H-P, Baldinger T, Sixta H (2006) Crystallinity determination of man-made cellulose fibers: comparison of analytical methods. Lenzinger Berichte 86:132–136

    Google Scholar 

  • Rojo E, Alonso V, Dominguez JC, Del Saz-Orozco B, Oliet M, Rodriguez F (2013) Alkali treatment of viscose cellulosic fibers from eucalyptus wood: structural, morphological, and thermal analysis. J Appl Polym Sci. doi:10.1002/app.39399

    Google Scholar 

  • Ruan D, Zhang L, Zhou J, Jin H, Chen H (2004) Structure and properties of novel fibers spun from cellulose in NaOH/thiourea aqueous solution. Macromol Biosci 4:1105–1112

    Article  CAS  Google Scholar 

  • Treiber E (1981) Cleanness problem for viscose spinning solutions. Ind Eng Chem Prod Res Dev 20:231–237

    Article  CAS  Google Scholar 

  • Vehviläinen M, Nousiainen P, Struszczyk H, Ciechañska D, Wawro D, East G (1996) CELSOL: biotransformation of cellulose for fibre spinning. In: Kennedy JF, Phillips GO, Williams PA (eds) The chemistry and processing of wood and plant fibrous material: cellucon’94 proceedings. Woodhead, Cambridge

    Google Scholar 

  • Vehviläinen M, Kamppuri T, Rom M, Janicki J, Ciechańska D, Grönqvist S, Siika-aho M, Elg Christofersson K, Nousiainen P (2008) Effect of wet spinning parameters on the properties of novel cellulosic fibres. Cellulose 15:671–680

    Article  Google Scholar 

  • Vehviläinen M, Nousiainen P, Kamppuri T, Järventausta M (2009) A method for dissolving cellulose and cellulosic product obtained from a solution comprising dissolved cellulose. US Patent 8,492,125 B2, 23 July 2013

  • Vehviläinen M, Kamppuri T, Nousiainen P, Kallioinen A, Siika-aho M, Elg Christoffersson K, Rom M, Jaroslaw J (2010) Effect of acid and enzymatic treatment of TCF dissolving pulp on the properties of wet spun cellulosic fibres. Cellulose Chem Technol 44(4–6):147–151

    Google Scholar 

  • von Bucher HP (1968) Viscose Rayon textile fibers. In: Mark HF, Atlas SM, Cernia E (eds) Man-made fibers science and technology, vol 2. Interscience, New York, London, pp 7–42

    Google Scholar 

  • Wardrop AB (1969) Fiber morphology and papermaking. Tappi 52:396–408

    CAS  Google Scholar 

  • Wilkes AC (2001) The viscose process. In: Woodings C (ed) Regenerated cellulose fibres. The Textile Institute, Woodhead, Cambridge, pp 37–61

    Chapter  Google Scholar 

  • Yamane C, Mori M, Saito M, Okajima K (1996) Structures and mechanical properties of cellulose filament spun from cellulose/aqueous NaOH solution system. Polym J 28:1039–1047

    Article  CAS  Google Scholar 

  • Yamashiki T, Saitoh M, Yasuda K, Okajima K, Kamide K (1990) Cellulose fiber spun from gelatinized cellulose/aqueous sodium hydroxide system by the wet-spinning method. Cellul Chem Technol 24:237–249

    CAS  Google Scholar 

  • Yang Q, Qi H, Lue A, Hu K, Cheng G, Zhang L (2011) Role of sodium zincate on cellulose dissolution in NaOH/urea aqueous solution at low temperature. Carbohydr Polym 83:1185–1191

    Article  CAS  Google Scholar 

  • Zhang S, Li F-X, Yu J-Y (2010) Preparation and characterization of novel regenerated cellulose fibers. Chem Fibers Int 4:228–229

    Google Scholar 

  • Ziabicki A (1967) Physical fundamentals of the fiber-spinning processes. In: Mark HF, Atlas SM, Cernia E (eds) Man-made fibers science and technology, vol 1. Interscience, New York, London, pp 13–94

    Google Scholar 

Download references

Acknowledgments

This work was a part of the FuBio Cellulose Program of the Finnish Bioeconomy Cluster FIBIC. Funding from the Finnish Funding Agency for Technology and Innovation (TEKES) is acknowledged. The technical assistance of Maija Järventausta, Mariitta Svanberg, Leena Nolvi and Pekka Laurikainen is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianna Vehviläinen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vehviläinen, M., Kamppuri, T., Grönqvist, S. et al. Dissolution of enzyme-treated cellulose using freezing–thawing method and the properties of fibres regenerated from the solution. Cellulose 22, 1653–1674 (2015). https://doi.org/10.1007/s10570-015-0632-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0632-0

Keywords

Navigation