Skip to main content
Log in

Modification of hardwood samples in the flowing afterglow of N2–O2 dielectric barrier discharges open to ambient air

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The effect of O2 addition in the gas feed of an open-to-air N2–O2 dielectric barrier discharge (DBD) on the surface modification of sugar maple hardwood samples is reported. After treatment by N2–O2 plasma, an increase of the contact angle with water and a decrease of the contact angle with diiodomethane was observed. X-ray photoelectron spectroscopy and Fourier-transform infra-red analyses further reveal a decrease of the O/C as well as increase of the C=O peak and surface aromaticity. When O2 is added to the nominally pure N2 DBD, the discharge transits from a homogeneous regime to a filamentary regime with increased dissipated power and neutral gas temperature. As a result, surface modification by N2–O2 plasmas becomes similar to those occurring under a low-temperature heat treatment of wood surfaces. In such conditions, a mechanism involving the thermally-activated deacetylation and depolymerisation of hemicelluloses and cross-linking between lignin and furfural and hydroxylmethylfurfural, leading to the increase of wood hydrophobicity is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Acda MN, Devera EE, Cabangon RJ, Ramos HJ (2011) Effects of plasma modification on adhesion properties of wood. Int J Adhes Adhes. doi:10.1016/j.ijadhadh.2011.10.003

    Google Scholar 

  • Avramidis G, Hauswald E, Lyapin A, Militz H, Viöl W, Wolkenhauer A (2009) Plasma treatment of wood and wood-based materials to generate hydrophilic or hydrophobic surface characteristics. Wood Mater Sci Eng 4:52–60. doi:10.1080/17480270903281642

    Article  CAS  Google Scholar 

  • Brandenburg R, Maiorov VA, Golubovskii YB, Wagner HE, Behnke J, Behnke JF (2005) Diffuse barrier discharges in nitrogen with small admixtures of oxygen: discharge mechanism and transition to the filamentary regime. J Phys D Appl Phys 38:2187–2197. doi:10.1088/0022-3727/38/13/017

    Article  CAS  Google Scholar 

  • Bryne L, Lausmaa J, Ernstsson M, Englund F, Walinder M (2010) Ageing of modified wood. Part 2: determination of surface composition of acylated, furfurylated, and thermally modified wood by XPS and ToF-SIMS. Holzforschung 64:305–313

    CAS  Google Scholar 

  • Carlsson CMG, Ström G (1991) Reduction and oxidation of cellulose surfaces by means of cold plasma. Langmuir 7:2492–2497

    Article  CAS  Google Scholar 

  • Christiansen AW (1990) How overdrying wood reduces its bonding to phenol–formaldehyde adhesives: a critical review of the literature. Part I. Physical responses. Wood Fiber Sci 22:441–459

    CAS  Google Scholar 

  • Donnelly VM, Malyshev MV (2000) Diagnostics of inductively coupled chlorine plasmas: measurements of the neutral gas temperature. Appl Phys Lett 77:2467. doi:10.1063/1.1318727

    Article  CAS  Google Scholar 

  • Dorris GM, Gray DG (1978) The surface analysis of paper and wood fibres by ESCA (I). Application to cellulose and lignin. Cellul Chem Technol 12:9–23

    CAS  Google Scholar 

  • Eliasson B, Hirth M, Kogelschatz U (1987) Ozone synthesis from oxygen in dielectric barrier discharges. J Phys D Appl Phys 20:1421

    Article  CAS  Google Scholar 

  • Esteves B, Pereira H (2008) Wood modification by heat treatment: a review. BioResources 4:370–404

    Google Scholar 

  • Gérardin P, Petrič M, Petrissans M, Lambert J, Ehrhrardt JJ (2007) Evolution of wood surface free energy after heat treatment. Polym Degrad Stab 92:653–657. doi:10.1016/j.polymdegradstab.2007.01.016

    Article  Google Scholar 

  • Gherardi N, Gouda G, Gat E, Ricard A, Massines F (2000) Transition from glow silent discharge to micro-discharges in nitrogen gases. Plasma Sources Sci Technol 9:340–346

    Article  CAS  Google Scholar 

  • Gindl M, Reiterer A, Sinn G, Stanzl-Tschegg SE (2004) Effects of surface ageing on wettability, surface chemistry, and adhesion of wood. Holz als Roh-und Werkstoff 62:273–280. doi:10.1007/s00107-004-0471-4

    Article  CAS  Google Scholar 

  • Hakkou M, Pétrissans M, Zoulalian A, Gérardin P (2005) Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polym Degrad Stab 89:1–5. doi:10.1016/j.polymdegradstab.2004.10.017

    Article  CAS  Google Scholar 

  • Inari GN, Petrissans M, Lambert J, Ehrhardt JJ, Gérardin P (2006) XPS characterization of wood chemical composition after heat-treatment surface and interface analysis 38:1336–1342. doi:10.1002/sia.2455

    CAS  Google Scholar 

  • Jean-Michel Hardy LV, Vlad M, Stafford L, Riedl B (2015a) Extractive influence in Black Spruce wood surface modification by cold atmospheric plasma. Surf Innov

  • Jean-Michel Hardy LV, Vlad M, Stafford L, Riedl B (2015b) Surface free radicals detection using molecular scavenging method on Black Spruce wood treated with cold, atmospheric-pressure plasmas. Appl Surf Sci

  • Kocaefe D, Poncsak S, Doré G, Younsi R (2008) Effect of heat treatment on the wettability of white ash and soft maple by water. Holz als Roh-und Werkstoff 66:355–361. doi:10.1007/s00107-008-0233-9

    Article  CAS  Google Scholar 

  • Kossyi IA, Kostinsky AY, Matveyev AA, Silakov VP (1992) Kinetic scheme of the non-equilibrium discharge in nitrogen–oxygen mixtures. Plasma Sources Sci Technol 1:207–220

    Article  CAS  Google Scholar 

  • Naudé N, Cambronne JP, Gherardi N, Massines F (2005) Electrical model and analysis of the transition from an atmospheric pressure Townsend discharge to a filamentary discharge. J Phys D Appl Phys 38:530–538. doi:10.1088/0022-3727/38/4/004

    Article  Google Scholar 

  • Nussbaum R (1999) Natural surface inactivation of Scots pine and Norway spruce evaluated by contact angle measurements. Holz als Roh-und Werkstoff 57:419–424

    Article  Google Scholar 

  • Pandey K (1999) A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J Appl Polym Sci 71:1969–1975

    Article  CAS  Google Scholar 

  • Podgorski L, Roux M (1999) Wood modification to improve the durability of coatings. Surf Coat Int 12:590–596

    Article  Google Scholar 

  • Prégent J, Vandsburger L, Blanchard V, Blanchet P, Riedl B, Sarkissian A, Stafford L (2014) Determination of active species in the modification of hardwood samples in the flowing afterglow of N2 dielectric barrier discharges open to ambient air. Cellulose 22:811–827. doi:10.1007/s10570-014-0496-8

    Article  Google Scholar 

  • Rehn P, Viöl W (2003) Dielectric barrier discharge treatments at atmospheric pressure for wood surface modification. Holz als Roh-und Werkstoff 61:145–150. doi:10.1007/s00107-003-0369-6

    CAS  Google Scholar 

  • Riedl B, Angel C, Prégent J, Blanchet P, Stafford L (2013) Wood surface modification by atmospheric-pressure plasma and effect on waterbone coating adhesion. Lignocellulose 2:292–306

    Google Scholar 

  • Staack D, Farouk B, Gutsol AF, Fridman AA (2006) Spectroscopic studies and rotational and vibrational temperature measurements of atmospheric pressure normal glow plasma discharges in air. Plasma Sources Sci Technol 15:818

    Article  CAS  Google Scholar 

  • Stevanovic T, Perrin D (2009) Chimie du bois. Presses polytechniques et universitaires romandes. CH-1015 Lausanne

  • Tjeerdsma B, Boonstra M, Pizzi A, Tekely P, Militz H (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz als Roh-und Werkstoff 56:149–153

    Article  CAS  Google Scholar 

  • Tuong VM, Li J (2011) Changes caused by heat treatment in chemical composition and some physical properties of acacia hybrid sapwood. Holzforschung. doi:10.1515/hf.2010.118

    Google Scholar 

  • Weiland J-J, Guyonnet R (2003) Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy. Holz als Roh-und Werkstoff 61:216–220

    CAS  Google Scholar 

  • Wolkenhauer A, Avramidis G, Hauswald E, Militz H, Viöl W (2009) Sanding vs. plasma treatment of aged wood: a comparison with respect to surface energy. Int J Adhes Adhes 29:18–22. doi:10.1016/j.ijadhadh.2007.11.001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Fonds de Recherche du Québec-Nature et Technologie (FQRNT) and by the Conseil de Recherches en Sciences Naturelles et Génie (CRSNG) of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Stafford.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prégent, J., Vandsburger, L., Blanchard, V. et al. Modification of hardwood samples in the flowing afterglow of N2–O2 dielectric barrier discharges open to ambient air. Cellulose 22, 3397–3408 (2015). https://doi.org/10.1007/s10570-015-0736-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0736-6

Keywords

Navigation