Skip to main content
Log in

Effect of the degree of substitution on the hydrophobicity of acetylated cellulose for production of liquid marbles

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Acetylated cellulose powders with varying degree of substitution (DS) were prepared by reacting cellulose with acetic anhydride. The effect of DS on the hydrophobic properties of acetylated cellulose was examined based on contact angle and mechanical stability measurements. The surface energy of the acetylated cellulose decreases with increasing DS, and for DS of 0.39, the acetylated cellulose was able to encapsulate a water droplet to form a liquid marble. The corresponding cellulose acetate powder-over-water spreading coefficient was ca. 8.9. Increasing DS also improved the mechanical stability of the liquid marble. This study opens important perspectives for the precise control of DS of cellulose acetate for various practical applications in membranes, filters, scaffolds, and textiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amin M, Abbas NS, Hussain MA, Edgar KJ, Tahir MN, Tremel W, Sher M (2015) Cellulose ether derivatives: a new platform for prodrug formation of fluoroquinolone antibiotics. Cellulose 22:2011–2022

    Article  CAS  Google Scholar 

  • Andresen M, Johansson L-S, Tanem BS, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13:665–677

    Article  CAS  Google Scholar 

  • Ashori A, Babaee M, Jonoobi M, Hamzeh Y (2014) Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohydr Polym 102:369–375

    Article  CAS  Google Scholar 

  • ASTM D871-96 (2004) Standard test methods of testing cellulose acetate (solution method; procedure A)

  • Aussillous P, Quere D (2001) Liquid marbles. Nature 411:924–927

    Article  CAS  Google Scholar 

  • Aussillous P, Quere D (2006) Properties of liquid marbles. Proc R Soc A 462:973–999

    Article  CAS  Google Scholar 

  • Avila Ramirez JA, Juan Suriano C, Cerrutti P, Laura Foresti M (2014) Surface esterification of cellulose nanofibers by a simple organocatalytic methodology. Carbohydr Polym 114:416–423

    Article  CAS  Google Scholar 

  • Bormashenko E (2011) Liquid marbles: properties and applications. Curr Opin Colloid Interface Sci 16:266–271

    Article  CAS  Google Scholar 

  • Bormashenko E, Stein T, Pogreb R, Aurbach D (2009) “Petal effect” on surfaces based on lycopodium: high-stick surfaces demonstrating high apparent contact angles. J Phys Chem C 113:5568–5572

    Article  CAS  Google Scholar 

  • Cai J, Zhang LN, Zhou JP, Li H, Chen H, Jin HM (2004) Novel fibers prepared from cellulose in NaOH/urea aqueous solution. Macromol Rapid Commun 25:1558–1562

    Article  CAS  Google Scholar 

  • Cai J, Zhang L, Zhou J, Qi H, Chen H, Kondo T, Chen X, Chu B (2007) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19:821–825

    Article  CAS  Google Scholar 

  • Cao SL, Ma XJ, Lin L, Huang F, Huang LL, Chen LH (2014) Morphological and chemical characterization of green bamboo (Dendrocalamopsis oldhami (Munro) Keng f.) for dissolving pulp production. Bioresources 9:4528–4539

    Article  Google Scholar 

  • Carlmark A, Malmstrom E (2002) Atom transfer radical polymerization from cellulose fibers at ambient temperature. J Am Chem Soc 124:900–901

    Article  CAS  Google Scholar 

  • Cengiz U, Erbil HY (2013) The lifetime of floating liquid marbles: the influence of particle size and effective surface tension. Soft Matter 9:8980–8991

    Article  CAS  Google Scholar 

  • Cetin NS, Tingaut P, Oezmen N, Henry N, Harper D, Dadmun M, Sebe G (2009) Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions. Macromol Biosci 9:997–1003

    Article  CAS  Google Scholar 

  • Cortina H, Martinez-Alonso C, Castillo-Ortega M, Hu H (2012) Cellulose acetate fibers covered by CdS nanoparticles for hybrid solar cell applications. Mater Sci Eng, B 177:1491–1496

    Article  CAS  Google Scholar 

  • Edgar KJ, Arnold KM, Blount WW, Lawniczak JE, Lowman DW (1995) Synthesis and properties of cellulose acetoacetates. Macromolecules 28:4122–4128

    Article  CAS  Google Scholar 

  • Frisoni G, Baiardo M, Scandola M, Lednická D, Cnockaert MC, Mergaert J, Swings J (2001) Natural cellulose fibers: heterogeneous acetylation kinetics and biodegradation behavior. Biomacromolecules 2:476–482

    Article  CAS  Google Scholar 

  • Gao LC, McCarthy TJ (2007) Ionic liquid marbles. Langmuir 23:10445–10447

    Article  CAS  Google Scholar 

  • Goussé C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43:2645–2651

    Article  Google Scholar 

  • Hapgood KP, Khanmohammadi B (2009) Granulation of hydrophobic powders. Powder Technol 189:253–262

    Article  CAS  Google Scholar 

  • Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4:2238–2244

    Article  CAS  Google Scholar 

  • Hu W, Chen S, Xu Q, Wang H (2011) Solvent-free acetylation of bacterial cellulose under moderate conditions. Carbohydr Polym 83:1575–1581

    Article  CAS  Google Scholar 

  • Ifuku S, Nogi M, Abe K, Handa K, Nakatsubo F, Yano H (2007) Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8:1973–1978

    Article  CAS  Google Scholar 

  • Jonoobi M, Mathew AP, Abdi MM, Makinejad MD, Oksman K (2012) A comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion. J Polym Environ 20:991–997

    Article  CAS  Google Scholar 

  • Kim DY, Nishiyama Y, Kuga S (2002) Surface acetylation of bacterial cellulose. Cellulose 9:361–367

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Li M, Wu Q, Song K, Lee S, Qing Y, Wu Y (2015a) Cellulose nanoparticles: Structure–Morphology–Rheology Relationships. ACS Sustain Chem Eng 3:821–832

    Article  CAS  Google Scholar 

  • Li MC, Wu QL, Song KL, Qing Y, Wu YQ (2015b) Cellulose nanoparticles as modifiers for Rheology and fluid loss in Bentonite water-based fluids. ACS Appl Mater Interfaces 7:5006–5016

    Article  CAS  Google Scholar 

  • Lin N, Huang J, Chang PR, Feng J, Yu J (2011) Surface acetylation of cellulose nanocrystal and its reinforcing function in poly (lactic acid). Carbohydr Polym 83:1834–1842

    Article  CAS  Google Scholar 

  • Lin X, Ma W, Wu H, Cao S, Huang L, Chen L, Takahara A (2016) Superhydrophobic magnetic poly(DOPAm-co-PFOEA)/Fe3O4/cellulose microspheres for stable liquid marbles. Chem Commun. doi:10.1039/C1035CC08842A

    Google Scholar 

  • Liu H, Kar N, Edgar KJ (2012) Direct synthesis of cellulose adipate derivatives using adipic anhydride. Cellulose 19:1279–1293

    Article  CAS  Google Scholar 

  • Malm CJ, Tanghe LJ, Schmitt JT (1961) Catalysts for acetylation of cellulose. Ind Eng Chem 53:363–367

    Article  CAS  Google Scholar 

  • Matsukuma D, Watanabe H, Yamaguchi H, Takahara A (2011) Preparation of low-surface-energy poly[2-(perfluorooctyl)ethyl acrylate] microparticles and its application to liquid marble formation. Langmuir 27:1269–1274

    Article  CAS  Google Scholar 

  • McEleney P, Walker GM, Larmour IA, Bell SEJ (2009) Liquid marble formation using hydrophobic powders. Chem Eng J 147:373–382

    Article  CAS  Google Scholar 

  • McHale G, Newton MI (2011) Liquid marbles: principles and applications. Soft Matter 7:5473–5481

    Article  CAS  Google Scholar 

  • Mele E, Bayer IS, Nanni G, Heredia-Guerrero JA, Ruffilli R, Ayadi F, Marini L, Cingolani R, Athanassiou A (2014) Biomimetic approach for liquid encapsulation with nanofibrillar cloaks. Langmuir 30:2896–2902

    Article  CAS  Google Scholar 

  • Ogawa S, Watanabe H, Wang L, Jinnai H, McCarthy TJ, Takahara A (2014) Liquid marbles supported by monodisperse poly (methylsilsesquioxane) particles. Langmuir 30:9071–9075

    Article  CAS  Google Scholar 

  • Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747

    Article  CAS  Google Scholar 

  • Pike N, Richard D, Foster W, Mahadevan L (2002) How aphids lose their marbles. Proc R Soc B 269:1211–1215

    Article  Google Scholar 

  • Potthast A, Radosta S, Saake B, Lebioda S, Heinze T, Henniges U, Isogai A, Koschella A, Kosma P, Rosenau T, Schiehser S, Sixta H, Strlič M, Strobin G, Vorwerg W, Wetzel H (2015) Comparison testing of methods for gel permeation chromatography of cellulose: coming closer to a standard protocol. Cellulose 22:1591–1613

    Article  CAS  Google Scholar 

  • Puls J, Wilson S, Hölter D (2011) Degradation of cellulose acetate-based materials: a review. J Polym Environ 19:152–165

    Article  CAS  Google Scholar 

  • Rensch H-P, Riedl B (1993) An Infrared spectroscopic study of chemically modified chemithermomechanical pulp. J Wood Chem Technol 13:167–186

    Article  CAS  Google Scholar 

  • Sassi J-F, Chanzy H (1995) Ultrastructural aspects of the acetylation of cellulose. Cellulose 2:111–127

    Article  CAS  Google Scholar 

  • Shanbhag A, Barclay B, Koziara J, Shivanand P (2007) Application of cellulose acetate butyrate-based membrane for osmotic drug delivery. Cellulose 14:65–71

    Article  CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  Google Scholar 

  • Teramoto Y (2015) Functional thermoplastic materials from derivatives of cellulose and related structural polysaccharides. Molecules 20:5487

    Article  CAS  Google Scholar 

  • Tungprapa S, Puangparn T, Weerasombut M, Jangchud I, Fakum P, Semongkhol S, Meechaisue C, Supaphol P (2007) Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter. Cellulose 14:563–575

    Article  CAS  Google Scholar 

  • Tupa MV, Ramírez JAÁ, Vázquez A, Foresti ML (2015) Organocatalytic acetylation of starch: effect of reaction conditions on DS and characterisation of esterified granules. Food Chem 170:295–302

    Article  CAS  Google Scholar 

  • Wu J, Zhang J, Zhang H, He JS, Ren Q, Guo M (2004) Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromolecules 5:266–268

    Article  CAS  Google Scholar 

  • Wu H, Watanabe H, Ma W, Fujimoto A, Higuchi T, Uesugi K, Takeuchi A, Suzuki Y, Jinnai H, Takahara A (2013) Robust liquid marbles stabilized with surface-modified halloysite nanotubes. Langmuir 29:14971–14975

    Article  CAS  Google Scholar 

  • Xu D, Voiges K, Elder T, Mischnick P, Edgar KJ (2012) Regioselective synthesis of cellulose ester homopolymers. Biomacromolecules 13:2195–2201

    Article  CAS  Google Scholar 

  • Xue YH, Wang HX, Zhao Y, Dai LM, Feng LF, Wang XG, Lin T (2010) Magnetic liquid marbles: a “precise” miniature reactor. Adv Mater 22:4814–4818

    Article  CAS  Google Scholar 

  • Zang D, Chen Z, Zhang Y, Lin K, Geng X, Binks BP (2013) Effect of particle hydrophobicity on the properties of liquid water marbles. Soft Matter 9:5067–5073

    Article  CAS  Google Scholar 

  • Zini E, Scandola M, Gatenholm P (2003) Heterogeneous acylation of flax fibers. Reaction kinetics and surface properties. Biomacromolecules 4:821–827

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31470598), the Award Program for Minjiang Scholar Professorship, and Training Fund for Outstanding Young Scholars of Fujian Agriculture and Forestry University (xjq201421).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Wu or Lihui Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3999 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Lin, X., White, K.L. et al. Effect of the degree of substitution on the hydrophobicity of acetylated cellulose for production of liquid marbles. Cellulose 23, 811–821 (2016). https://doi.org/10.1007/s10570-015-0856-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0856-z

Keywords

Navigation