Skip to main content
Log in

A comparative study for oil-absorbing performance of octadecyltrichlorosilane treated Calotropis gigantea fiber and kapok fiber

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A hydrophobic layer was formed on smooth surfaces of Calotropis gigantea fiber (CGF) and kapok fiber (KF) by adsorption of octadecyltrichlorosilane (OTS) from a toluene solution and then a comparative study was carried out on the basis of various characterizations and oil-absorbing performances for the two natural plant fibers. The resulting OTS-CGF and OTS-KF exhibit outstanding hydrophobic–oleophilic property and an enhancement in the oil-absorbing capacity for engine oil, soybean oil and kerosene. Moreover, the fibers can be utilized for rapid and selective removal of oil spills on the water surface. Compared to KF, CGF seems to be acid-resistant during the hydrolysis process of OTS, with the result that the oil-absorbing capacity exhibits no significant decrease after ten cycles. Eventually, CGF-based material can be further developed for oil–water separation, demonstrating its potential as a promising alternative for treatment of oil-containing wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdullah MA, Rahmah AU, Man Z (2010) Physicochemical and sorption characteristics of Malaysian Ceiba pentandra (L.) Gaertn. as a natural oil sorbent. J Hazard Mater 177:683–691

    Article  CAS  Google Scholar 

  • Ali N, El-Harbawi M, Jabal AA, Yin C-Y (2012) Characteristics and oil sorption effectiveness of kapok fibre, sugarcane bagasse and rice husks: oil removal suitability matrix. Environ Technol 33:481–486

    Article  CAS  Google Scholar 

  • Annunciado TR, Sydenstricker THD, Amico SC (2005) Experimental investigation of various vegetable fibers as sorbent materials for oil spills. Mar Pollut Bull 50:1340–1346

    Article  CAS  Google Scholar 

  • Ashori A, Bahreini Z (2009) Evaluation of Calotropis gigantea as a promising raw material for fiber-reinforced composite. J Compos Mater 43:1297–1304

    Article  CAS  Google Scholar 

  • Babu ARS, Karki SS (2011) Anti-convulsant activity of various extracts of leaves of Calotropis gigantea Linn against seizure induced models. Int J Pharm Pharm Sci 3:200–203

    Google Scholar 

  • Bastani D, Safekordi A, Alihosseini A, Taghikhani V (2006) Study of oil sorption by expanded perlite at 298.15 K. Sep Purif Technol 52:295–300

    Article  CAS  Google Scholar 

  • Bi H, Xie X, Yin K, Zhou Y, Wan S, He L, Xu F, Banhart F, Sun L, Ruoff R (2012) Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv Funct Mater 22:4421–4425

    Article  CAS  Google Scholar 

  • Cha K-H, Kim D-E (2001) Investigation of the tribological behavior of octadecyltrichlorosilane deposited on silicon. Wear 251:1169–1176

    Article  Google Scholar 

  • Chen Q, Zhao T, Wang M, Wang J (2013) Studies of the fibre structure and dyeing properties of Calotropis gigantea, kapok and cotton fibres. Color Technol 129:448–453

    Article  CAS  Google Scholar 

  • Chen L, Du R, Zhang J, Yi T (2015) Density controlled oil uptake and beyond: from carbon nanotubes to graphene nanoribbon aerogels. J Mater Chem A 3:20547–20553

    Article  CAS  Google Scholar 

  • Choi H-M (1992) Natural sorbents in oil spill cleanup. Environ Sci Technol 26:772–776

    Article  CAS  Google Scholar 

  • Deschamps G, Caruel H, Borredon M-E, Albasi C, Riba J-P, Bonnin C, Vignoles C (2003a) Oil removal from water by sorption on hydrophobic cotton fibers. 2. Study of sorption properties in dynamic mode. Environ Sci Technol 37:5034–5039

    Article  CAS  Google Scholar 

  • Deschamps G, Caruel H, Borredon M-E, Bonnin C, Vignoles C (2003b) Oil removal from water by selective sorption on hydrophobic cotton fibers. 1. Study of sorption properties and comparison with other cotton fiber-based sorbents. Environ Sci Technol 37:1013–1015

    Article  CAS  Google Scholar 

  • Deshmukha PT, Fernandes J, Atul A, Toppo E (2009) Wound healing activity of Calotropis gigantea root bark in rats. J Ethnopharmacol 125:178–181

    Article  Google Scholar 

  • Dong T, Xu G, Wang F (2015a) Oil spill cleanup by structured natural sorbents made from cattail fibers. Ind Crop Prod 76:25–33

    Article  CAS  Google Scholar 

  • Dong T, Xu G, Wang F (2015b) Adsorption and adhesiveness of kapok fiber to different oils. J Hazard Mater 296:101–111

    Article  CAS  Google Scholar 

  • Dong T, Wang F, Xu G (2015c) Sorption kinetics and mechanism of various oils into kapok assembly. Ind Crop Prod 91:230–237

    CAS  Google Scholar 

  • Duan B, Gao H, He M, Zhang L (2014) Hydrophobic modification on surface of chitin sponges for highly effective separation of oil. ACS Appl Mater Interfaces 6:19933–19942

    Article  CAS  Google Scholar 

  • Erdman MD, Erdman BA (1981) Calotropis procera as a source of plant hydrocarbons. Econ Bot 35:467–472

    Article  CAS  Google Scholar 

  • Gui X, Wei J, Wang K, Cao A, Zhu H, Jia Y, Shu Q, Wu D (2010) Carbon nanotube sponges. Adv Mater 22:617–621

    Article  CAS  Google Scholar 

  • Hu H, Zhao Z, Gogotsi Y, Qiu J (2014) Compressible carbon nanotube–graphene hybrid aerogels with superhydrophobicity and superoleophilicity for oil sorption. Environ Sci Technol Lett 1:214–220

    Article  CAS  Google Scholar 

  • Hui B, Li Y, Huang Q, Li G, Li J, Cai L, Yu H (2015a) Fabrication of smart coatings based on wood substrates with photoresponsive behavior and hydrophobic performance. Mater Des 84:277–284

    CAS  Google Scholar 

  • Hui B, Wu D, Huang Q, Cai L, Li G, Li J, Zhao G (2015b) Photoresponsive and wetting performances of sheet-like nanostructures of tungsten trioxide thin films grown on wood surfaces. RSC Adv 5:73566–73574

    Article  CAS  Google Scholar 

  • Inagaki M, Kawahara A, Konno H (2002) Sorption and recovery of heavy oils using carbonized fir fibers and recycling. Carbon 40:105–111

    Article  CAS  Google Scholar 

  • Jin Y, Jiang P, Ke Q, Cheng F, Zhu Y, Zhang Y (2015) Superhydrophobic and superoleophilic polydimethylsiloxane-coated cotton for oil–water separation process: an evidence of the relationship between its loading capacity and oil absorption. J Hazard Mater 300:175–181

    Article  CAS  Google Scholar 

  • Ke Q, Jin Y, Jiang P, Yu J (2014) Oil/water separation performances of superhydrophobic and superoleophilic sponges. Langmuir 30:13137–13142

    Article  CAS  Google Scholar 

  • Khosravi M, Azizian S (2015) Synthesis of a novel highly oleophilic and highly hydrophobic sponge for rapid oil spill cleanup. ACS Appl Mater Interfaces 7:25326–25333

    Article  CAS  Google Scholar 

  • Li D, Zhu FZ, Li JY, Na P, Wang N (2013) Preparation and characterization of cellulose fibers from corn straw as natural oil sorbents. Ind Eng Chem Res 52:516–524

    Article  CAS  Google Scholar 

  • Lim T, Huang X (2007a) Evaluation of kapok (Ceiba pentandra (L.) Gaertn.) as a natural hollow hydrophobic–oleophilic fibrous sorbent for oil spill cleanup. Chemosphere 66:955–963

    Article  CAS  Google Scholar 

  • Lim T, Huang X (2007b) Evaluation of hydrophobicity/oleophilicity of kapok and its performance in oily water filtration: comparison of raw and solvent-treated fibers. Ind Crop Prod 26:125–134

    Article  CAS  Google Scholar 

  • Liu F, Ma M, Zang D, Gao Z, Wang C (2014) Fabrication of superhydrophobic/superoleophilic cotton for application in the field of water/oil separation. Carbohydr Polym 103:480–487

    Article  CAS  Google Scholar 

  • Meng Y, Young TM, Liu P, Contescu CI, Huang B, Wang S (2015) Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material. Cellulose 22:435–447

    Article  CAS  Google Scholar 

  • Mwaikambo LY (2001) The determination of porosity and cellulose content of plant fibers by density methods. J Mater Sci Lett 20:2095–2096

    Article  CAS  Google Scholar 

  • Mysore D, Viraragavan T, Jin Y (2005) Treatment of oily waters using vermiculite. Water Res 39:2643–2653

    Article  CAS  Google Scholar 

  • Nourbakhsh A (2009) Giant milkweed (Calotropis persica) fibers-a potential reinforcement agent for thermoplastics composites. J Reinf Plast Compos 28:2143–2149

    Article  CAS  Google Scholar 

  • Pan Y, Shi K, Peng C, Wang W, Liu Z, Ji X (2014) Evaluation of hydrophobic polyvinyl-alcohol formaldehyde sponges as absorbents for oil spill. ACS Appl Mater Interfaces 6:8651–8659

    Article  CAS  Google Scholar 

  • Paul JH, Hollander D, Coble P, Daly KL, Murasko S, English D, Basso J, Delaney J, McDaniel L, Kovach CW (2013) Toxicity and mutagenicity of gulf of Mexico waters during and after the deepwater horizon oil spill. Environ Sci Technol 47:9651–9659

    Article  CAS  Google Scholar 

  • Pham VH, Dickerson JH (2014) Superhydrophobic silanized melamine sponges as high efficiency oil absorbent materials. ACS Appl Mater Interfaces 6:14181–14188

    Article  CAS  Google Scholar 

  • Phoo ZWMM, Razon LF, Knothe G, Ilham Z, Goembira F, Madrazo CF, Roces SA, Saka S (2015) Evaluation of Indian milkweed (Calotropis gigantea) seed oil as alternative feedstock for biodiesel. Ind Crop Prod 54:226–232

    Article  Google Scholar 

  • Qiu S, Yin H, Zheng J, Jiang B, Wu M, Wu W (2014) A biomimetic 3D ordered multimodal porous carbon with hydrophobicity for oil–water separation. Mater Lett 133:40–43

    Article  CAS  Google Scholar 

  • Sai H, Fu R, Xing L, Xiang J, Li Z, Li F, Zhang T (2015) Surface modification of bacterial cellulose aerogels’ web-like skeleton for oil/water separation. ACS Appl Mater Interfaces 7:7373–7381

    Article  CAS  Google Scholar 

  • Sakthivel JC, Mukhopadhyay S, Palanisamy NK (2005) Some studies on Mudar fibers. J Ind Text 35:63–76

    Article  CAS  Google Scholar 

  • Seal S, Sakthivel T, Reid D, Goldstein I, Hench L (2013) Hydrophobic high surface area zeolites derived from fly ash for oil spill remediation. Environ Sci Technol 47:5843–5850

    Article  Google Scholar 

  • Singh V, Jinka S, Hake K, Parameswaran S, Kendall RJ, Ramkumar S (2014) Novel natural sorbent for oil spill cleanup. Ind Eng Chem Res 53:11954–11961

    Article  CAS  Google Scholar 

  • Syed S, Alhazzaa MI, Asif M (2011) Treatment of oily water using hydrophobic nano-silica. Chem Eng J 167:99–103

    Article  CAS  Google Scholar 

  • Tansel B, Pascual B (2011) Removal of emulsified fuel oils from brackish and pond water by dissolved air flotation with and without polyelectrolyte use: pilotscale investigation for estuarine and near shore applications. Chemosphere 85:1182–1186

    Article  CAS  Google Scholar 

  • Tjandra R, Lui G, Veilleux A, Broughton J, Chiu G, Yu A (2015) Introduction of an enhanced binding of reduced graphene oxide to polyurethane sponge for oil absorption. Ind Eng Chem Res 54:3657–3663

    Article  CAS  Google Scholar 

  • Tripp CP, Hair ML (1992) An infrared study of the reaction of octadecyltrichlorosilane with silica. Langmuir 8:1120–1126

    Article  CAS  Google Scholar 

  • Tuntawiroon N, Samootsakorn P, Theeraraj G (1984) The environmental implications of the use of Calotropis gigantea as a textile fabric. Agric Ecosyst Environ 11:203–212

    Article  Google Scholar 

  • Wang J, Zheng Y, Kang Y, Wang A (2013) Investigation of oil sorption capability of PBMA/SiO2 coated kapok fiber. Chem Eng J 223:632–637

    Article  CAS  Google Scholar 

  • Wu L, Li L, Li B, Zhang J, Wang A (2015) Magnetic, durable, and superhydrophobic polyurethane@Fe3O4@SiO2@fluoropolymer sponges for selective oil absorption and oil/water separation. ACS Appl Mater Interfaces 7:4936–4946

    Article  CAS  Google Scholar 

  • Xiong S, Long H, Tang G, Wan J, Li H (2015) The management in response to marine oil spill from ships in China: a systematic review. Mar Pollut Bull 96:7–17

    Article  CAS  Google Scholar 

  • Yang Y, Tong Z, Ngai T, Wang C (2014) Nitrogen-rich and fire-resistant carbon aerogels for the removal of oil contaminants from water. ACS Appl Mater Interfaces 6:6351–6360

    Article  CAS  Google Scholar 

  • Zadaka-Amir D, Bleiman N, Mishael YG (2013) Sepiolite as an effective natural porous adsorbent for surface oil-spill. Microporous Mesoporous Mater 169:153–159

    Article  CAS  Google Scholar 

  • Zang D, Liu F, Zhang M, Gao Z, Wang C (2015) Novel superhydrophobic and superoleophilic sawdust as a selective oil sorbent for oil spill cleanup. Chem Eng Res Des 102:34–41

    Article  CAS  Google Scholar 

  • Zhang A, Chen M, Du C, Guo H, Bai H, Li L (2013) Poly(dimethylsiloxane) oil absorbent with a three-dimensionally interconnected porous structure and swellable skeleton. ACS Appl Mater Interfaces 5:10201–10206

    Article  CAS  Google Scholar 

  • Zhang Z, Sèbe G, Rentsch D, Zimmermann T, Tingaut P (2014) Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26:2659–2668

    Article  CAS  Google Scholar 

  • Zhang N, Jiang W, Wang T, Gu J, Zhong S, Zhou S, Xie T, Fu J (2015) Facile preparation of magnetic poly(styrene-divinylbenzene) foam and its application as an oil absorbent. Ind Eng Chem Res 54:11033–11039

    Article  CAS  Google Scholar 

  • Zheng Y, Wang J, Zhu Y, Wang A (2015) Research and application of kapok fiber as an absorbing material: a mini review. J Environ Sci 27:21–32

    Article  Google Scholar 

  • Zheng Y, Zhu Y, Wang A, Hu H (2016) Potential of Calotropis gigantea fiber as an absorbent for removal of oil from water. Ind Crop Prod 83:387–390

    Article  CAS  Google Scholar 

  • Zhu H, Qiu S, Jiang W, Wu D, Zhang C (2011) Evaluation of electrospun polyvinyl chloride/polystyrene fibers as sorbent materials for oil spill cleanup. Environ Sci Technol 45:4527–4531

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank for the joint support of the National Natural Science Foundation of China (No. 21477135), the Fundamental Research Funds for the Central Universities (No. lzujbky-2015-127), and the Hui-Chun Chin and Tsung-Dao Lee Chinese Undergraduate Research Endowment (No. JZH0028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yian Zheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4863 kb)

Supplementary material 2 (MOV 1325 kb)

Supplementary material 3 (MOV 857 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Cao, E., Tu, L. et al. A comparative study for oil-absorbing performance of octadecyltrichlorosilane treated Calotropis gigantea fiber and kapok fiber. Cellulose 24, 989–1000 (2017). https://doi.org/10.1007/s10570-016-1155-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1155-z

Keywords

Navigation