Skip to main content
Log in

The role of CNC surface modification on the structural, thermal and electrical properties of poly(vinylidene fluoride) nanocomposites

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This work shows the effect of cellulose nanocrystal surface charge on the morphology, structure, thermal and dielectric properties of poly(vinylidene fluoride) nanocomposites. CNCs extracted through sulfuric acid hydrolysis were modified using sodium hydroxide and cationization treatments to yield CNCs with zeta-potential values of − 26.1 ± 3.7 and − 4.4 ± 0.3 mV in comparison with the original highly-negative − 45.2 ± 1.1 mV. Nanocomposites where then obtained through doctor-blade casting followed by room temperature drying. CNC incorporation allows obtaining PVDF with 100% of γ-phase. An increase of the real dielectric constant ε′, dielectric loss tan δ and AC conductivity was observed by increasing CNC content. More importantly, these values are further boosted upon CNC surface-modification, suggesting the pivotal role of the CNC–PVDF interface. We conclude that the sulfate half-ester removal increase the amount of exposed –OH groups with increase the amount of accumulated charges at the PVDF–CNC interfaces.

Graphic abstract

The effect of cellulose nanocrystal (CNC) surface charge on the morphology, structure, thermal and dielectric properties of poly(vinylidene fluoride) (PVDF) nanocomposites is here shown. By removing the sulfate half-ester it is possible to increase the amount of exposed –OH groups, enhancing the accumulated charges at the PVDF–CNC interfaces and improving the electric performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All the data used to support the findings of this study are included within the article.

References

  • Abdel-karim AM, Salama AH, Hassan ML (2018) Electrical conductivity and dielectric properties of nanofibrillated cellulose thin films from bagasse. J Phys Org Chem 31(9):e3851

    Google Scholar 

  • Abitbol T, Marway H, Cranston E (2014) Surface modification of cellulose nanocrystals with cetyltrimethylammonium bromide. Nord Pulp Pap Res J 29:46–57

    CAS  Google Scholar 

  • Alanis A, Valdés JH, María Guadalupe NV, Lopez R, Mendoza R, Mathew AP, Valencia L (2019) Plasma surface-modification of cellulose nanocrystals: a green alternative towards mechanical reinforcement of ABS. RSC Adv 9(30):17417–17424

    CAS  Google Scholar 

  • Bai H, Wang X, Zhou Y, Zhang L (2012) Preparation and characterization of poly(vinylidene fluoride) composite membranes blended with nano-crystalline cellulose. Prog Nat Sci Mater Int 22(3):250–257

    Google Scholar 

  • Barnes E, Jefcoat JA, Alberts EM, McKechnie MA, Peel HR, Buchanan JP, Warner CM (2019) Effect of cellulose nanofibrils and TEMPO-mediated oxidized cellulose nanofibrils on the physical and mechanical properties of Poly(vinylidene fluoride)/cellulose manofibril composites. Polymers 11(7):1091

    CAS  PubMed Central  Google Scholar 

  • Cai X, Lei T, Sun D, Lin L (2017) A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv 7(25):15382–15389

    CAS  Google Scholar 

  • Cai X, Jiang Z, Zhang X, Gao T, Yue K, Zhang X (2018) Thermal property improvement of polytetrafluoroethylene nanocomposites with graphene nanoplatelets. RSC Adv 8(21):11367–11374

    CAS  Google Scholar 

  • Chen RH, Chen LF, Chia CT (2007) Impedance spectroscopic studies on congruent LiNbO3single crystal. J Phys Condens Matter 19(8):086225

    Google Scholar 

  • Cho SY, Lee ME, Kwak HW, Jin H-J (2018) Surface-modified cellulose nanocrystal-incorporated Poly(butylene succinate) nanocomposites. Fibers Polym 19(7):1395–1402

    CAS  Google Scholar 

  • Cui Z, Hassankiadeh NT, Zhuang Y, Drioli E, Lee YM (2015) Crystalline polymorphism in poly(vinylidenefluoride) membranes. Prog Polym Sci 51:94–126

    CAS  Google Scholar 

  • Dillon DR, Tenneti KK, Li CY, Ko FK, Sics I, Hsiao BS (2006) On the structure and morphology of polyvinylidene fluoride–nanoclay nanocomposites. Polymer 47(5):1678–1688

    CAS  Google Scholar 

  • Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16(6):220–227

    CAS  Google Scholar 

  • Ferreira JCC, Monteiro TS, Lopes AC, Costa CM, Silva MM, Machado AV, Lanceros-Mendez S (2015) Variation of the physicochemical and morphological characteristics of solvent casted poly(vinylidene fluoride) along its binary phase diagram with dimethylformamide. J Non-Cryst Solids 412:16–23

    CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    CAS  Google Scholar 

  • Godzhaev EM, Magerramov AM, Osmanova SS, Nuriev MA, Allakhyarov EA (2007) Charge state of composites based on polyethylene with semiconductor filler TlInSe2. Surf Eng Appl Electrochem 43(2):148–151

    Google Scholar 

  • Gregorio R, Ueno EM (1999) Effect of crystalline phase, orientation and temperature on the dielectric properties of poly(vinylidene fluoride) (PVDF). J Mater Sci 34(18):4489–4500

    CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

    CAS  PubMed  Google Scholar 

  • Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4(11):2238

    CAS  Google Scholar 

  • Hikosaka M, Rastogi S, Keller A, Kawabata H (1992) Investigations on the crystallization of polyethylene under high pressure: role of mobile phases, lamellar thickening growth, phase transformations, and morphology. J Macromol Sci Part B 31(1):87–131

    CAS  Google Scholar 

  • Issa AA, Al-Maadeed M, Luyt AS, Mrlik M, Hassan MK (2016) Investigation of the physico-mechanical properties of electrospun PVDF/cellulose (nano)fibers. J Appl Polym Sci 133(26):43594

    Google Scholar 

  • Jia N, Xing Q, Xia G, Sun J, Song R, Huang W (2015) Enhanced β-crystalline phase in poly(vinylidene fluoride) films by polydopamine-coated BaTiO3 nanoparticles. Mater Lett 139:212–215

    CAS  Google Scholar 

  • Jiang Y, Ye Y, Yu J, Wu Z, Li W, Xu J, Xie G (2007) Study of thermally poled and corona charged poly(vinylidene fluoride) films. Polym Eng Sci 47(9):1344–1350

    CAS  Google Scholar 

  • Jonscher AK (1977) The ‘universal’ dielectric response. Nature 267(5613):673–679

    CAS  Google Scholar 

  • Kollmann FVA, Bazhenov: Piezoelectric Properties of Wood. Consultants Bureau, New York (1961) Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische. Chemie 66(6):522–523

    Google Scholar 

  • Lin N, Dufresne A (2014) Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6:5384–5393

    CAS  PubMed  Google Scholar 

  • Lizundia E, Meaurio E, Vilas JL (2016) Chapter 3—grafting of cellulose nanocrystals. In: Multifunctional polymeric nanocomposites based on cellulosic reinforcements, pp 61–113

  • Lizundia E, Urruchi A, Vilas JL, Leon LM (2016) Increased functional properties and thermal stability of flexible cellulose nanocrystal/ZnO films. Carbohydr Polym 136:250–258

    CAS  PubMed  Google Scholar 

  • Lizundia E, Nguyen TD, Vilas JL, Hamad WY, MacLachlan MJ (2017) Chiroptical, morphological and conducting properties of chiral nematic mesoporous cellulose/polypyrrole composite films. J Mater Chem A 5(36):19184–19194

    CAS  Google Scholar 

  • Lizundia E, Goikuria U, Vilas JL, Cristofaro F, Bruni G, Fortunati E, Armentano I, Visai L, Torre L (2018) Metal nanoparticles embedded in cellulose nanocrystal based films: material properties and post-use analysis. Biomacromol 19(7):2618–2628

    CAS  Google Scholar 

  • Lopes AC, Costa CM, Tavares CJ, Neves IC, Lanceros-Mendez S (2011) Nucleation of the electroactive γ phase and enhancement of the optical transparency in low filler content poly(vinylidene)/clay nanocomposites. J Phys Chem C 115(37):18076–18082

    CAS  Google Scholar 

  • Lopes AC, Costa CM, i Serra RS, Neves IC, Ribelles JLG, Lanceros-Méndez S (2013) Dielectric relaxation, ac conductivity and electric modulus in poly(vinylidene fluoride)/NaY zeolite composites. Solid State Ionics 235:42–50

    CAS  Google Scholar 

  • Lucchini MA, Lizundia E, Moser S, Niederberger M, Nystrom G (2018) Titania-cellulose hybrid monolith for in-flow purification of water under solar illumination. ACS Appl Mater Interfaces 10(35):29599–29607

    CAS  PubMed  Google Scholar 

  • Lv J, Zhang G, Zhang H, Zhao C, Yang F (2018a) Improvement of antifouling performances for modified PVDF ultrafiltration membrane with hydrophilic cellulose nanocrystal. Appl Surf Sci 440:1091–1100

    CAS  Google Scholar 

  • Lv J, Zhang G, Zhang H, Yang F (2018b) Graphene oxide-cellulose nanocrystal (GO-CNC) composite functionalized PVDF membrane with improved antifouling performance in MBR: behavior and mechanism. Chem Eng J 352:765–773

    CAS  Google Scholar 

  • Marega C, Marigo A (2003) Influence of annealing and chain defects on the melting behaviour of poly(vinylidene fluoride). Eur Polym J 39(8):1713–1720

    CAS  Google Scholar 

  • Mendes SF, Costa CM, i Serra RS, Baldalo AA, Sencadas V, Gomez-Ribelles JL, Lanceros-Méndez S (2012) Influence of filler size and concentration on the low and high temperature dielectric response of poly(vinylidene fluoride)/Pb(Zr0.53Ti0.47)O3 composites. J Polym Res 19(9):9967

    Google Scholar 

  • Mendes-Felipe C, Oliveira J, Etxebarria I, Vilas-Vilela JL, Lanceros-Mendez S (2019) State-of-the-art and future challenges of UV curable polymer-based smart materials for printing technologies. Adv Mater Technol 4(3):1800618

    Google Scholar 

  • Mujal-Rosas R, Marin Genesca M, Garcia Amoros J, Colom Fajula X, Salueña Berna X (2020) Comparison of the mechanical and dielectric characteristics of various polymers mixed with ground tired rubber (GTR) for its application as industrial work footwear insulator. DYNA 95:61–67

    Google Scholar 

  • Nguyen TD, Sierra E, Eguiraun H, Lizundia E (2019) Iridescent cellulose nanocrystal films: the link between structural colour and Bragg’s law. Eur J Phys 39:045803

    Google Scholar 

  • Ponnamma D, Parangusan H, Tanvir A, AlMa'adeed MAA (2019) Smart and robust electrospun fabrics of piezoelectric polymer nanocomposite for self-powering electronic textiles. Mater Des 184:108176

    CAS  Google Scholar 

  • Ram F, Ambone T, Sharma A, Murugesan R, Shanmuganathan K (2018) Fluorinated nanocellulose-reinforced all-organic flexible ferroelectric nanocomposites for energy generation. J Phys Chem C 122(29):16540–16549

    CAS  Google Scholar 

  • Ribeiro C, Costa CM, Correia DM, Nunes-Pereira J, Oliveira J, Martins P, Lanceros-Méndez S (2018) Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nat Protoc 13(4):681–704

    CAS  PubMed  Google Scholar 

  • Rincon-Iglesias M, Lizundia E, Lanceros-Mendez S (2019) Water-soluble cellulose derivatives as suitable matrices for multifunctional materials. Biomacromol 20(7):2786–2795

    CAS  Google Scholar 

  • Sadi MS, Yang M, Luo L, Cheng D, Cai G, Wang X (2020) Direct screen printing of single-faced conductive cotton fabrics for strain sensing, electrical heating and color changing. Cellulose 26(10):6196–6188

    Google Scholar 

  • Satapathy S, Pawar S, Gupta PK, Rvarma KB (2011) Effect of annealing on phase transition in poly(vinylidene fluoride) films prepared using polar solvent. Bull Mater Sci 34(4):727–733

    CAS  Google Scholar 

  • Sencadas V, Gregorio R, Lanceros-Méndez S (2009) α to β phase transformation and microestructural changes of PVDF films induced by uniaxial stretch. J Macromol Sci Part B Phys 48(3):514–525

    CAS  Google Scholar 

  • Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36(5):638–670

    CAS  Google Scholar 

  • Tan Z, Fu C, Gao Y, Qian J, Li W, Wu X, Ran X (2018) Modifications of Gamma poly(vinylidene fluoride) (γ-PVDF) films by high-energy electron beam irradiation. Radiat Phys Chem 153:258–268

    CAS  Google Scholar 

  • Tang XG, Hou M, Zou J, Truss R (2011) Poly(vinylidene fluoride)/microcrystalline cellulose nanocomposites with enhanced compatibility and properties. Key Eng Mater 471–472:355–360

    Google Scholar 

  • Tang CW, Li B, Sun L, Lively B, Zhong WH (2012) The effects of nanofillers, stretching and recrystallization on microstructure, phase transformation and dielectric properties in PVDF nanocomposites. Eur Polym J 48(6):1062–1072

    CAS  Google Scholar 

  • Wang X, Cheng W, Wnag D, Ni X, Han G (2019) Electrospun polyvinylidene fluoride-based fibrous nanocomposite membranes reinforced by cellulose nanocrystals for efficient separation of water-in-oil emulsions. J Membr Sci 575:71–79

    CAS  Google Scholar 

  • Yun G-Y, Kim J-H, Kim J (2009) Dielectric and polarization behaviour of cellulose electro-active paper (EAPap). J Phys D Appl Phys 42(8):082003

    Google Scholar 

  • Zhang G, Lv J, Yang F (2019) Optimized anti-biofouling performance of bactericides/cellulose nanocrystals composites modified PVDF ultrafiltration membrane for micro-polluted source water purification. Water Sci Technol 79:1437–1446

    PubMed  Google Scholar 

  • Zhao Z, Zheng W, Yu W, Long B (2009) Electrical conductivity of poly(vinylidene fluoride)/carbon nanotube composites with a spherical substructure. Carbon 47(8):2118–2120

    CAS  Google Scholar 

  • Zheng M, Tajvidi M, Tayeb AH, Stark NM (2020) Effects of bentonite on physical, mechanical and barrier properties of cellulose nanofibril hybrid films for packaging applications. Cellulose 26(9):5363–5379

    Google Scholar 

Download references

Acknowledgments

The authors thank the FCT (Fundação para a Ciência e Tecnologia) for financial support under the framework of Strategic Funding Grants UID/FIS/04650/2019, UID/EEA/04436/2013 and UID/QUI/0686/ 2016; and Projects Nos. PTDC/BTM-MAT/28237/2017; PTDC/EMD-EMD/28159/2017 and PTDC/FIS-MAC/28157/2017. The authors also thank the FCT for financial Support under grants SFRH/BPD/121526/2016 (D.M.C.) and SFRH/BPD/112547/2015 (C.M.C.) as well POCH and European Union. Financial support from the Spanish Ministry of Economy and Competitiveness (MINECO) through Project MAT2016- 76039-C4-3-R (AEI/FEDER, UE) (including FEDER financial support) and from the Basque Government Industry and Education Departments under the ELKARTEK, HAZITEK and PIBA (PIBA-2018-06) programs, respectively, is also acknowledged

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Erlantz Lizundia or Carlos M. Costa.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rincón-Iglesias, M., Lizundia, E., Correia, D.M. et al. The role of CNC surface modification on the structural, thermal and electrical properties of poly(vinylidene fluoride) nanocomposites. Cellulose 27, 3821–3834 (2020). https://doi.org/10.1007/s10570-020-03067-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03067-z

Keywords

Navigation