Skip to main content
Log in

Enriched Environment Prevents Hypobaric Hypoxia Induced Neurodegeneration and is Independent of Antioxidant Signaling

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Hypobaric hypoxia (HH) induced neurodegeneration has been attributed to several factors including increased oxidative stress, glutamate excitotoxicity, decreased growth factors, apoptosis, etc. Though enriched environment (EE) has been known to have beneficial effects in various neurological disorders, its effect on HH mediated neurodegeneration remains to be studied. Therefore, the present study was conducted to explore the effect of EE on HH induced neurodegeneration. Male Sprague–Dawley rats were placed in enriched and standard conditions during exposure to HH (7 days) equivalent to an altitude of 25,000 ft. The effect of EE on oxidative stress markers, apoptosis, and corticosterone level in hippocampus was investigated. EE during exposure to HH was found to decrease neurodegeneration as evident from decreased caspase 3 expression and LDH leakage. However, no significant changes were observed in ROS, MDA, and antioxidant status of hippocampus. HH elevates corticosterone level and affected the diurnal corticoid rhythm which may contribute to neurodegeneration, whereas EE ameliorate this effect. Because of the association of neurotrophins and stress and/or corticosterone the BDNF and NGF levels were also examined and it was found that HH decreases their level but concurrent exposure to EE maintains their level. Moreover, inhibition of Tyrosine kinase receptor (Trk) with K252a nullifies the protective effect of EE, whereas Trk activation with agonist, amitriptyline showed protective effect similar to EE. Taken together, we conclude that EE has a potential to ameliorate HH mediated neuronal degeneration which may act through antioxidant independent pathway by modulation of neurotrophins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

HA:

High altitude

HH:

Hypobaric hypoxia

HI:

Hypoxia-ischemia

EE:

Enriched Environment

BDNF:

Brain derived neurotrophic factor

NGF:

Nerve growth factor

ROS:

Reactive oxygen species

RNS:

Reactive nitrogen species

MDA:

Malondialdehyde

LDH:

Lactate dehydrogenase

GSH:

Glutathione

GSSG:

Glutathione disulfide

GPx:

Glutathione peroxidase

GR:

Glutathione reductase

GST:

Glutathione s-transferase

Trk:

Tyrosine kinase

References

  • Almli LM, Hamrick SE, Koshy AA, Tauber MG, Ferriero DM (2001) Multiple pathways of neuroprotection against oxidative stress and excitotoxic injury in immature primary hippocampal neurons. Brain Res Dev Brain Res 132:121–129

    Article  PubMed  CAS  Google Scholar 

  • Askew EW (2002) Work at high altitude and oxidative stress: antioxidant nutrients. Toxicology 180:107–119

    Article  PubMed  CAS  Google Scholar 

  • Bakos J, Hlavacova N, Rajman M, Ondicova K, Koros C, Kitraki E, Steinbusch HW, Jezova D (2009) Enriched environment influences hormonal status and hippocampal brain derived neurotrophic factor in a sex dependent manner. Neuroscience 164(2):788–797

    Article  PubMed  CAS  Google Scholar 

  • Benveniste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43(5):1369–1374

    Article  PubMed  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Ann Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT (1998) Mitochondrial reactive oxygen species trigger hypoxia induced transcription. Proc Natl Acad Sci USA 95(20):11715–11720

    Article  PubMed  CAS  Google Scholar 

  • DeKosky ST, Taffe KM, Abrahamson EE, Dixon CE, Kochanek PM, Ikonomovic MD (2004) Time course analysis of hippocampal nerve growth factor and antioxidant enzyme activity following lateral controlled cortical impact brain injury in the rat. J Neurotrauma 21:491–500

    Article  PubMed  Google Scholar 

  • Dringen R, Pawlowski PG, Hirrlinger J (2005) Peroxide detoxification by brain cells. J Neurosci Res 79:157–165

    Article  PubMed  CAS  Google Scholar 

  • Fernández CI, Collazo J, Bauza Y, Castellanos MR, López O (2004) Environmental enrichment-behavior-oxidative stress interactions in the aged rat: issues for a therapeutic approach in human aging. Ann N Y Acad Sci 1019:53–57

    Article  PubMed  Google Scholar 

  • Gelfo F, Cutuli D, Foti F, Laricchiuta D, De Bartolo P, Caltagirone C, Petrosini L, Angelucci F (2010) Enriched environment improves motor function and increases neurotrophins in hemicerebellar lesioned rats. Neurorehabil Neural Repair 25(3):243–252

    PubMed  Google Scholar 

  • Gorter JA, Petrozzino JJ, Aronica EM, Rosenbaum DM, Opitz T, Bennett MV, Connor JA, Zukin RS (1997) Global ischemia induces downregulation of GluR2 mRNA and increases AMPA receptor mediated Ca2 + influx in hippocampal CA1 neuron of gerbil. J Neurosci 17:6179–6188

    PubMed  CAS  Google Scholar 

  • Habig WH, Jacoby WB (1981) Assays for differentiation of glutathione S-transferases. Methods Enzymol 77:398–405

    Article  PubMed  CAS  Google Scholar 

  • Han BH, Holtzman DM (2000) BDNF protects the neonatal brain from hypoxic–ischemic injury in vivo via the ERK pathway. J Neurosci 20(15):5775–5781

    PubMed  CAS  Google Scholar 

  • Hartman RE, Lee JM, Zipfel GJ, Wozniak DF (2005) Characterizing learning deficits and hippocampal neuron loss following transient global cerebral ischemia in rats. Brain Res 10(1043(1-2)):48–56

    Article  Google Scholar 

  • Herring A, Blome M, Ambrée O, Sachser N, Paulus W, Keyvani K (2009) Reduction of cerebral oxidative stress following environmental enrichment in mice with Alzheimer-like pathology. Brain Pathol 20(1):66–75

    Google Scholar 

  • Hissin PJ, Hilf RA (1976) Fluorimetric method for determination of oxidized and reduced glutathione in tissue. Anal Biochem 74:214–226

    Article  PubMed  CAS  Google Scholar 

  • Ho KY, Huh BK, White WD, Yeh CC, Miller EJ (2008) Topical amitriptyline versus lidocaine in the treatment of neuropathic pain. Clin J Pain 24:51–55

    Article  PubMed  Google Scholar 

  • Hota SK, Barhwal K, Singh SB, Ilavazhagan G (2007) Differential temporal response of hippocampus, cortex and cerebellum to hypobaric hypoxia: a biochemical approach. Neurochem Int 51:384–390

    Article  PubMed  CAS  Google Scholar 

  • Hota SK, Barhwal Kalpana, Singh SB, Ilavazhagan G (2008) Chronic hypobaric hypoxia induced apoptosis in CA1 region of hippocampus: a possible role of NMDAR mediated p75NTR upregulation. Exp Neurol 212:5–13

    Article  PubMed  CAS  Google Scholar 

  • Kramer AF, Coyne JT, Strayer DL (1993) Cognitive function at high altitude. Hum Factors 35:329–344

    PubMed  CAS  Google Scholar 

  • Lawrence RA, Burk RF (1976) Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 71:952–958

    Article  PubMed  CAS  Google Scholar 

  • Lee IM, Paffenbarger RS Jr (1998) Physical activity and stroke incidence: the Harvard Alumni Health Study. Stroke 29:2049–2054

    Article  PubMed  CAS  Google Scholar 

  • Louis FR (2006) Neurotrophin-regulated signalling pathways. Phil Trans R Soc B 361:1545–1564

    Article  Google Scholar 

  • Maiti Panchanan, Singh SB, Sharma AK, Muthuraju S, Banerjee PK, Ilavazhagan G (2006) Hypobaric hypoxia induces oxidative stress in rat brain. Neurochem Int 49:709–716

    Article  PubMed  CAS  Google Scholar 

  • Mylorie AA, Collins H, Umbles C, Kyle J (1986) Erythrocyte superoxide dismutase activity and other parameters of copper status in rats ingesting lead acetate. Toxicol Appl Pharmacol 82:512–520

    Article  Google Scholar 

  • Nguyen TL, Kim CK, Cho JH, Lee KH, Ahn JY (2010) Neuroprotection signaling pathway of nerve growth factor and brain-derived neurotrophic factor against staurosporine induced apoptosis in hippocampal H19–7/IGF-IR. Exp Mol Med 42(8):583–595

    Article  PubMed  CAS  Google Scholar 

  • Nitta A, Ohmiya M, Sometani A, Itoh M, Nomoto H, Furukawa Y, Furukawa S (1999) Brain-derived neurotrophic factor prevents neuronal cell death induced by corticosterone. J Neurosci Res 57:227–235

    Article  PubMed  CAS  Google Scholar 

  • Nur Azlina MF, Nafeeza MI (2008) Tocotrienol and alpha-tocopherol reduce corticosterone and noradrenalin levels in rats exposed to restraint stress. Pharmazie 63(12):890–892

    PubMed  CAS  Google Scholar 

  • Opii WO, Joshi G, Head E, Milgram NW, Muggenburg BA, Klein JB, Pierce WM, Cotman CW, Butterfield DA (2008) Proteomic identification of brain proteins in the canine model of human aging following a long-term treatment with antioxidants and a program of behavioral enrichment: relevance to Alzheimer’s disease. Neurobiol Aging 29:51–70

    Article  PubMed  CAS  Google Scholar 

  • Ozturk E, Demirbilek S, Kadir But A, Saricicek V, Gulec M, Akyol O, Ozcan Ersoy M (2005) Antioxidant properties of propofol and erythropoietin after closed head injury in rats. Prog Neuropsychopharmacol Biol Psychiatry 29:922–927

    Article  PubMed  CAS  Google Scholar 

  • Pellegrini-Giampietro DE, Zukin RS, Bennett MV, Cho S, Pulsinelli WA (1992) Switch in glutamate receptor subunit gene expression in CA1 subfield of hippocampus following global ischemia in rats. Proc Natl Acad Sci USA 89:10499–10503

    Article  PubMed  CAS  Google Scholar 

  • Pereira LO, Nabinger PM, Strapasson AC, Nardin P, Gonçalves CA, Siqueira IR, Netto CA (2009) Long-term effects of environmental stimulation following hypoxia-ischemia on the oxidative state and BDNF levels in rat hippocampus and frontal cortex. Brain Res 1247:188–195

    Article  PubMed  CAS  Google Scholar 

  • Robinson JP, Bruner LH, Basoe CF, Hudson JL, Ward PA, Phan SH (1998) Measurement of intracellular fluorescence of human monocytes relative to oxidative metabolism. J Leukoc Biol 43:304–310

    Google Scholar 

  • Rossi DJ, Oshima T, Attwell D (2000) Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403:316–321

    Article  PubMed  CAS  Google Scholar 

  • Rossi C, Angelucci A, Costantin L, Braschi C, Mazzantini M, Babbini F, Fabbri ME, Tessarollo L, Maffei L, Berardi N, Caleo M (2006) Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. Eur J Neurosci 24:1850–1856

    Article  PubMed  Google Scholar 

  • Sapolsky RM (1996) Stress, glucocorticoids, and damage to the nervous system: the current state of confusion. Stress 1:1–19

    Article  PubMed  CAS  Google Scholar 

  • Sgoifo A, Papi F (1995) Effects of social and non-social acute stressors on plasma levels of cate-cholamines and corticosterone in wild rats. Rendiconti Lincei 6:289–298

    Article  Google Scholar 

  • Shukitt-Hale B, Banderet LE, Lieberman HR (1998) Elevation-dependent symptom, mood, and performance changes produced by exposure to hypobaric hypoxia. Int J Aviat Psychol 8(4):319–334

    Article  PubMed  CAS  Google Scholar 

  • Skelton MR, Williams MT, Schaefer TL, Vorhees CV (2007) Neonatal (+)-methamphetamine increases brain derived neurotrophic factor, but not nerve growth factor, during treatment and results in long-term spatial learning deficits. Psychoneuroendocrinology 32:734–745

    Article  PubMed  CAS  Google Scholar 

  • Söderström I, Strand M, Ingridsson AC, Nasic S, Olsson T (2009) 17 beta-estradiol and enriched environment accelerate cognitive recovery after focal brain ischemia. Eur J Neurosci 29(6):1215–1224

    Article  PubMed  Google Scholar 

  • Stroev SA, Gluschenko TS, Tjulkova EI, Rybnikova EA, Samoilov MO, Pelto-Huikko M (2005) The effect of preconditioning on the Cu, Zn superoxide dismutase expression and enzyme activity in rat brain at the early period after severe hypobaric hypoxia. Neurosci Res 53(1):39–47

    Article  PubMed  CAS  Google Scholar 

  • Sung WukJang, Liu Xia, Chan Chi-Bun, Weinshenker David, Hall RA, Xiao Ge, Yel Keqiang (2009) The antidepressant amitriptyline is a TrkA and TrkB receptor agonist that promotes TrkA/TrkB heterodimerization and has potent neurotrophic activity. Chem Biol 16(6):644–656

    Article  Google Scholar 

  • Tadahiro Numakawal, Kumamaru Emi, Adachi Naoki, Yagasaki Yuki, Izumi Aiko, Kunugi Hiroshi (2008) Glucocorticoid receptor interaction with TrkB promotes BDNF-triggered PLC-_ signaling for glutamate release via a glutamate transporter. PNAS 106:647–652

    Google Scholar 

  • Tschöp M, Strasburger CJ, Hartmann G, Biollaz J, Bärtsch P (1998) Raised leptin concentrations at high altitude associated with loss of appetite. Lancet 352:1119–1120

    Article  PubMed  Google Scholar 

  • Utley HG, Bernheim F, Hochstein P (1967) Effect of sulphydryl reagents on per oxidation of microsomes. Arch Biochem Biophys 118:29–32

    Article  CAS  Google Scholar 

  • Watson CP (2000) The treatment of neuropathic pain: antidepressants and opioids. Clin J Pain 16:S49–S55

    Article  PubMed  CAS  Google Scholar 

  • Westerterp KR (2001) Energy and water balance at high altitude. News Physiol Sci 16:134–137

    PubMed  CAS  Google Scholar 

  • Wong YN, Chien BM, D’mello AP (1994) Analysis of corticosterone in rat plasma by high-performance liquid chromatography. J Chromatogr B Biomed Appl 661(2):211–218

    Article  PubMed  CAS  Google Scholar 

  • Yun Wang, Qi Jin-Shun, Kong Shuzhen, Sun Yajie, Fan Jing, Jiang Min, Chen Gong (2009) BDNF-TrkB signaling pathway mediates the induction of epileptiform activity induced by a convulsant drug cyclothiazide. Neuropharmacology 57(1):49–59

    Article  Google Scholar 

Download references

Acknowledgment

The study was fully supported by Defence Research and Development Organization (DRDO), Ministry of Defence India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ilavazhagan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, V., Baitharu, I., Barhwal, K. et al. Enriched Environment Prevents Hypobaric Hypoxia Induced Neurodegeneration and is Independent of Antioxidant Signaling. Cell Mol Neurobiol 32, 599–611 (2012). https://doi.org/10.1007/s10571-012-9807-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-012-9807-5

Keywords

Navigation