Skip to main content
Log in

Bortezomib Downregulates MGMT Expression in T98G Glioblastoma Cells

  • Short Communication
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The efficacy of treatment for glioblastoma multiforme is currently limited by the development of resistance, particularly, but not exclusively, due to the expression of the DNA repair enzyme O6-methylguanine methyltransferase (MGMT) in a significant proportion of astrocytic tumors. MGMT is post-translationally regulated by the 26S proteasome, a multi-subunit organelle responsible for degradation of misfolded cellular proteins. The boronic acid dipeptide bortezomib is the first and only proteasome inhibitor in clinical use so far, and has been reported as a strategy to restrict growth and promote apoptosis of glioblastoma cells. In this study we investigated the effect of bortezomib on MGMT expression in T98G cells, looking for an effect on the nuclear factor kappa B (NFκB) pathway, which is a major player in MGMT regulation and is also under tight control by the ubiquitin–proteasome system. Administration of bortezomib led to a significant reduction of T98G cell viability and induction of DNA fragmentation. These effects coincided with reduced expression of MGMT transcript levels, and a decrease in cellular amount and IκBα-mediated, proteasomal activity-dependent nuclear translocation of NFκB. In addition, bortezomib-induced phosphorylation of the translation initiation factor 2alpha (eIF2α) was in parallel with translational repression of MGMT. Taken together, these results suggest a novel role for bortezomib as a potent MGMT inhibitor and support its ongoing testing as a chemosensitizer in glioblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Adams J (2003) The proteasome: structure, function, and role in the cell. Cancer Treat Rev 29(Suppl 1):3–9

    Article  PubMed  CAS  Google Scholar 

  • Bhakat KK, Mitra S (2000) Regulation of the human O(6)-methylguanine-DNA methyltransferase gene by transcriptional coactivators cAMP response element-binding protein-binding protein and p300. J Biol Chem 275:34197–34204

    Article  PubMed  CAS  Google Scholar 

  • Biswas T, Ramana CV, Srinivasan G, Boldogh I, Hazra TK, Chen Z, Tano K, Thompson EB, Mitra S (1999) Activation of human O6-methylguanine-DNA methyltransferase gene by glucocorticoid hormone. Oncogene 18:525–532

    Article  PubMed  CAS  Google Scholar 

  • Bocangel D, Sengupta S, Mitra S, Bhakat KK (2009) p53-Mediated down-regulation of the human DNA repair gene O6-methylguanine-DNA methyltransferase (MGMT) via interaction with Sp1 transcription factor. Anticancer Res 29:3741–3750

    PubMed  CAS  Google Scholar 

  • Boldogh I, Ramana CV, Chen Z, Biswas T, Hazra TK, Grösch S, Grombacher T, Mitra S, Kaina B (1998) Regulation of expression of the DNA repair gene O6-methylguanine-DNA methyltransferase via protein kinase C-mediated signaling. Cancer Res 58:3950–3956

    PubMed  CAS  Google Scholar 

  • Chen FY, Harris LC, Remack JS, Brent TP (1997) Cytoplasmic sequestration of an O6-methylguanine-DNA methyltransferase enhancer binding protein in DNA repair-deficient human cells. Proc Natl Acad Sci USA 94:4348–4353

    Article  PubMed  CAS  Google Scholar 

  • Christmann M, Verbeek B, Roos WP, Kaina B (2011) O(6)-Methylguanine-DNA methyltransferase (MGMT) in normal tissues and tumors: enzyme activity, promoter methylation and immunohistochemistry. Biochim Biophys Acta 1816:179–190

    PubMed  CAS  Google Scholar 

  • Haar CP, Hebbar P, Wallace GC 4th, Das A, Vandergrift WA 3rd, Smith JA, Giglio P, Patel SJ, Ray SK, Banik NL (2012) Drug resistance in glioblastoma: a mini review. Neurochem Res 37:1192–1200

    Article  PubMed  CAS  Google Scholar 

  • Harris LC, Remack JS, Houghton PJ, Brent TP (1996) Wild-type p53 suppresses transcription of the human O6-methylguanine-DNA methyltransferase gene. Cancer Res 56:2029–2032

    PubMed  CAS  Google Scholar 

  • Hermisson M, Klumpp A, Wick W, Wischhusen J, Nagel G, Roos W, Kaina B, Weller M (2006) O6-methylguanine DNA methyltransferase and p53 status predict temozolomide sensitivity in human malignant glioma cells. J Neurochem 96:766–776

    Article  PubMed  CAS  Google Scholar 

  • Kohsaka S, Wang L, Yachi K, Mahabir R, Narita T, Itoh T, Tanino M, Kimura T, Nishihara H, Tanaka S (2012) STAT3 inhibition overcomes temozolomide resistance in glioblastoma by downregulating MGMT expression. Mol Cancer Ther 11:1289–1299

    Article  PubMed  CAS  Google Scholar 

  • Kubicek GJ, Werner-Wasik M, Machtay M, Mallon G, Myers T, Ramirez M, Andrews D, Curran WJ Jr, Dicker AP (2009) Phase I trial using proteasome inhibitor bortezomib and concurrent temozolomide and radiotherapy for central nervous system malignancies. Int J Radiat Oncol Biol Phys 74:433–439

    Article  PubMed  CAS  Google Scholar 

  • Lavon I, Fuchs D, Zrihan D, Efroni G, Zelikovitch B, Fellig Y, Siegal T (2007) Novel mechanism whereby nuclear factor kappaB mediates DNA damage repair through regulation of O(6)-methylguanine-DNA-methyltransferase. Cancer Res 67:8952–8959

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Bai L, Chen W, Xu S (2010) The NF-kappaB activation pathways, emerging molecular targets for cancer prevention and therapy. Expert Opin Ther Targets 14:45–55

    Article  PubMed  CAS  Google Scholar 

  • Patrikidou A, Vlachostergios PJ, Voutsadakis IA, Hatzidaki E, Valeri RM, Destouni C, Apostolou E, Daliani D, Papandreou CN (2011) Inverse baseline expression pattern of the NEP/neuropeptides and NFκB/proteasome pathways in androgen-dependent and androgen-independent prostate cancer cells. Cancer Cell Int 11:13

    Article  PubMed  CAS  Google Scholar 

  • Persano L, Pistollato F, Rampazzo E, Della Puppa A, Abbadi S, Frasson C, Volpin F, Indraccolo S, Scienza R, Basso G (2012) BMP2 sensitizes glioblastoma stem-like cells to Temozolomide by affecting HIF-1α stability and MGMT expression. Cell Death Dis 3:e412. doi:10.1038/cddis.2012.153

    Article  PubMed  CAS  Google Scholar 

  • Phuphanich S, Supko JG, Carson KA, Grossman SA, Burt Nabors L, Mikkelsen T, Lesser G, Rosenfeld S, Desideri S, Olson JJ (2010) Phase 1 clinical trial of bortezomib in adults with recurrent malignant glioma. J Neurooncol 100:95–103

    Article  PubMed  CAS  Google Scholar 

  • Pieper RO (1997) Understanding and manipulating O6-methylguanine-DNA methyltransferase expression. Pharmacol Ther 74:285–297

    Article  PubMed  CAS  Google Scholar 

  • Preusser M, de Ribaupierre S, Wöhrer A, Erridge SC, Hegi M, Weller M, Stupp R (2011) Current concepts and management of glioblastoma. Ann Neurol 70:9–21

    Article  PubMed  Google Scholar 

  • Raychaudhuri B, Han Y, Lu T (2007) Vogelbaum MA (2007) Aberrant constitutive activation of nuclear factor kappaB in glioblastoma multiforme drives invasive phenotype. J Neurooncol 85:39–47

    Article  PubMed  CAS  Google Scholar 

  • Sato A, Sunayama J, Matsuda K, Seino S, Suzuki K, Watanabe E, Tachibana K, Tomiyama A, Kayama T, Kitanaka C (2011) MEK-ERK signaling dictates DNA-repair gene MGMT expression and temozolomide resistance of stem-like glioblastoma cells via the MDM2-p53 axis. Stem Cells 29:1942–1951

    Article  PubMed  CAS  Google Scholar 

  • Seol DW (2011) p53-Independent up-regulation of a TRAIL receptor DR5 by proteasome inhibitors: a mechanism for proteasome inhibitor-enhanced TRAIL-induced apoptosis. Biochem Biophys Res Commun 416:222–225

    Article  PubMed  CAS  Google Scholar 

  • Tianhu Z, Shiguang Z, Xinghan L (2010) Bmf is upregulated by PS-341-mediated cell death of glioma cells through JNK phosphorylation. Mol Biol Rep 37:1211–1219

    Article  PubMed  Google Scholar 

  • Unterkircher T, Cristofanon S, Vellanki SH, Nonnenmacher L, Karpel-Massler G, Wirtz CR, Debatin KM, Fulda S (2011) Bortezomib primes glioblastoma, including glioblastoma stem cells, for TRAIL by increasing tBid stability and mitochondrial apoptosis. Clin Cancer Res 17:4019–4030

    Article  PubMed  CAS  Google Scholar 

  • Xu-Welliver M, Pegg AE (2002) Degradation of the alkylated form of the DNA repair protein, O(6)-alkylguanine-DNA alkyltransferase. Carcinogenesis 23:823–830

    Article  PubMed  CAS  Google Scholar 

  • Yerlikaya A, DoKudur H (2010) Investigation of the eIF2alpha phosphorylation mechanism in response to proteasome inhibition in melanoma and breast cancer cells. Mol Biol (Mosk) 44:859–866

    Article  Google Scholar 

  • Yin D, Zhou H, Kumagai T, Liu G, Ong JM, Black KL, Koeffler HP (2005) Proteasome inhibitor PS-341 causes cell growth arrest and apoptosis in human glioblastoma multiforme (GBM). Oncogene 24:344–354

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Zhang J, Hoadley K, Kushwaha D, Ramakrishnan V, Li S, Kang C, You Y, Jiang C, Song SW, Jiang T, Chen CC (2012) miR-181d: a predictive glioblastoma biomarker that downregulates MGMT expression. Neuro Oncol 14:712–719

    Article  PubMed  CAS  Google Scholar 

  • Zhu K, Chan W, Heymach J, Wilkinson M (2009) McConkey DJ (2009) Control of HIF-1alpha expression by eIF2 alpha phosphorylation-mediated translational repression. Cancer Res 69:1836–1843

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis J. Vlachostergios.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlachostergios, P.J., Hatzidaki, E., Stathakis, N.E. et al. Bortezomib Downregulates MGMT Expression in T98G Glioblastoma Cells. Cell Mol Neurobiol 33, 313–318 (2013). https://doi.org/10.1007/s10571-013-9910-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-013-9910-2

Keywords

Navigation