Skip to main content

Advertisement

Log in

Neuroprotective Effects of Bikaverin on H2O2-Induced Oxidative Stress Mediated Neuronal Damage in SH-SY5Y Cell Line

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The generation of free radicals and oxidative stress has been linked to several neurodegenerative diseases including Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, and Amyotrophic lateral sclerosis. The use of free radical scavenging molecules for the reduction of intracellular reactive oxygen species is one of the strategies used in the clinical management of neurodegeneration. Fungal secondary metabolism is a rich source of novel molecules with potential bioactivity. In the current study, bikaverin was extracted from Fusarium oxysporum f. sp. lycopersici and its structural characterization was carried out. Further, we explored the protective effects of bikaverin on oxidative stress and its anti-apoptotic mechanism to attenuate H2O2-induced neurotoxicity using human neuroblastoma SH-SY5Y cells. Our results elucidate that pretreatment of neurons with bikaverin attenuates the mitochondrial and plasma membrane damage induced by 100 µM H2O2 to 82 and 26 % as evidenced by MTT and LDH assays. H2O2 induced depletion of antioxidant enzyme status was also replenished by bikaverin which was confirmed by Realtime Quantitative PCR analysis of SOD and CAT genes. Bikaverin pretreatment efficiently potentiated the H2O2-induced neuronal markers, such as BDNF, TH, and AADC expression, which orchestrate the neuronal damage of the cell. The H2O2-induced damage to cells, nuclear, and mitochondrial integrity was also restored by bikaverin. Bikaverin could be developed as a preventive agent against neurodegeneration and as an alternative to some of the toxic synthetic antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 5:S18–S25

    Article  Google Scholar 

  • Balan J, Fuska J, Kuhr I, Kuhrová V (1970) Bikaverin, an antibiotic from Gibberella fujikuroi, effective against Leishmania brasiliensis. Folia Microbiol 15:479–484

    Article  CAS  Google Scholar 

  • Baraccaa A, Gianluca S, Giancarlo S, Giorgio L (2003) Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F0 during ATP synthesis. Biochim Biophys Acta 1606:137–146

    Article  Google Scholar 

  • Bell AA, Wheeler MH, Liu J, Stipanovic RD, Puckhaber LS, Orta H (2003) United States Department of Agriculture-Agricultural Research Service. Studies on polyketide toxins of Fusarium oxysporum f. sp. vasinfectum: potential targets for disease control. Pest Manag Sci 59:736–747

    Article  PubMed  CAS  Google Scholar 

  • Brewer D, Arsenault GP, Wright C, Vining LC (1973) Production of bikaverin by Fusarium oxysporum and its identity with lycopersin. J Antibiot 26:778–781

    Article  CAS  Google Scholar 

  • Carmen LM, Roberto RO, Javier A (2010) Bikaverin production and applications. Appl Microbiol Biotechnol 87:21–29

    Article  Google Scholar 

  • Casson RJ, Chidlow G, Ebneter A, Wood JP, Crowston J, Goldberg I (2012) Translational neuroprotection research in glaucoma: a review of definitions and principles. Clin Exp Ophthalmol 40(4):350–357

    Article  Google Scholar 

  • Chen WG, Chang Q, Lin Y, Meissner A, West AE, Griffith EC, Jaenisch R, Greenberg ME (2003) Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 302:885–889

    Article  PubMed  CAS  Google Scholar 

  • Cho HS, Kim S, Lee SY, Park JA, Kim SJ, Chun HS (2008) Protective effect of the green tea component, l-theanine on environmental toxins-induced neuronal cell death. Neurotoxicology 29(4):656–662

    Article  PubMed  CAS  Google Scholar 

  • Cho ES, Jang YJ, Hwang MK, Kang NJ, Lee KW, Lee HJ (2009) Attenuation of oxidative neuronal cell death by coffee phenolic phytochemicals. Mutat Res 661:18–24

    Article  PubMed  CAS  Google Scholar 

  • Choi BS, Sapkota K, Kim S, Lee HJ, Choi HS, Kim SJ (2010) Antioxidant activity and protective effects of Tripterygium regelii extract on hydrogen peroxide-induced injury in human dopaminergic cells, SH-SY5Y. Neurochem Res 35:1269–1280

    Article  PubMed  CAS  Google Scholar 

  • Denisova NA, Cantuti-Castelvetri I, Haasan WN, Paulson KE, Joseph JA (2001) Role of membrane lipids in regulation of vulnerability to oxidative stress in PC12 cells: implication for aging. Free Radic Biol Med 30:671–678

    Article  PubMed  CAS  Google Scholar 

  • Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391:43–50

    Article  PubMed  CAS  Google Scholar 

  • Fernandez SE, Canizares FJ, Cubero MA, Warley A, Campos A (1999) Changes in elemental content during apoptotic cell death studied by electron probe X-ray microanalysis. Exp Cell Res 253:454–462

    Article  Google Scholar 

  • Forman HJ (2007) Use and abuse of exogenous H2O2 in studies of signal transduction. Free Radic Biol Med 42:926–932

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Freidovich I (1999) Fundamental aspects of reactive oxygen species, or what’s the matter with oxygen? Ann N Y Acad Sci 893:13

    Article  Google Scholar 

  • Friedman J (2011) Why is the nervous system vulnerable to oxidative stress? In: Gadoth N, Gobel HH (eds) Oxidative stress in applied basic research and clinical practice. The Humana Press, New York, pp 19–27

    Google Scholar 

  • Ghaffari H, Ghassam BJ, Chandra Nayaka S, Ramachandra Kini K, Prakash HS (2014) Antioxidant and neuroprotective activities of Hyptis suaveolens (L.) Poit. against oxidative stress-induced neurotoxicity. Cell Mol Neurobiol. doi:10.1007/s10571-013-0016-7

    PubMed  PubMed Central  Google Scholar 

  • Gilgun-Sherki Y, Melamed E, Offen D (2001) Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology 40:959–975

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge JMC (1995) Lipid peroxidation and antioxidants as biomarker of tissue damage. Clin Chem 41:1819–1828

    PubMed  CAS  Google Scholar 

  • Halliwell B, Aruoma OI (1991) DNA damage by oxygen derived species. Its mechanism and measurement in mammalian systems. FEBS Lett 281:9–19

    Article  PubMed  CAS  Google Scholar 

  • Hemanth Kumar K, Khanum F (2013) Hydroalcoholic extract of Cyperus rotundus ameliorates H2O2-induced human neuronal cell damage via its anti-oxidative and anti-apoptotic machinery. Cell Mol Neurobiol 33:5–17

    Article  PubMed  Google Scholar 

  • Hiort J, Maksimenka K, Reichert M, Perovic-Ottstadt S, Lin WH, Wray V, Steube K, Schaumann K, Weber H, Proksch P, Ebel R, Müller WEG, Bringmann G (2004) New natural products from the sponge-derived fungus Aspergillus niger. J Nat Prod 67:1532–1543

    Article  PubMed  CAS  Google Scholar 

  • Hyejin L, Jinhee K, Seo YL, Jeong HP, Gwi SH (2012) Processed Panax ginseng, Sun Ginseng, decreases oxidative damage induced by tert-butyl hydroperoxide via regulation of antioxidant enzyme and anti-apoptotic molecules in HepG2 cells. J Ginseng Res 36(3):248–255

    Article  Google Scholar 

  • Joshi DC, Bakowska JC (2011) Determination of mitochondrial membrane potential and reactive oxygen species in live rat cortical neurons. J Vis Exp 51:e2704

    Google Scholar 

  • Kassie F, Parzefall W, Knasmuller S (2000) Single cell gel electrophoresis assay: a new technique for human biomonitoring studies. Mutat Res 463:13–31

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Ko H, Bang HS, Park SH, Kim DG, Kwon HC, Kim SY, Shin J, Oh DC (2011) Coprismycins A and B, neuroprotective phenylpyridines from the dung beetle-associated bacterium, Streptomyces sp. Bioorg Med Chem Lett 21:5715–5718

    Article  PubMed  CAS  Google Scholar 

  • Klein JA, Susan LA (2003) Oxidative stress, cell cycle, and neurodegeneration. J Clin Invest 111:785–793

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kovac L, Bohmerova E, Fuska J (1978) Inhibition of mitochondrial functions by the antibiotics bikaverin and duclauxine. J Antibiot 31:616–620

    Article  PubMed  CAS  Google Scholar 

  • Kovacsova M, Barta A, Parohova J, Vrankova S, Pechanova O (2010) Neuroprotective mechanisms of natural polyphenolic compounds. Act Nerv Super Rediviva 52(3):181–186

    Google Scholar 

  • Kumar KH, Tamatam A, Pal A, Khanum F (2013) Neuroprotective effects of Cyperus rotundus on SIN-1 induced nitric oxide generation and protein nitration: ameliorative effect against apoptosis mediated neuronal cell damage. Neurotoxicology 34:150–159

    Article  Google Scholar 

  • Kwon HR, Son SW, Han HR, Choi GJ, Jang KS, Choi YH, Lee S, Sung ND, Kim JC (2007) Nematicidal activity of bikaverin and fusaric acid isolated from Fusarium oxysporum against pine wood nematode, Bursaphelenchus xylophilus. Plant Pathol J 23:318–321

    Article  Google Scholar 

  • Kwon SH, Kim MJ, Ma SX, You IJ, Hwang JY, Oh JH, Kim SY, Kim HC, Lee SY, Jang CG (2012) Eucommia ulmoides Oliv. Bark. protects against hydrogen peroxide-induced neuronal cell death in SH-SY5Y cells. J Ethnopharmacol 142(2):337–345

    Article  PubMed  Google Scholar 

  • Lau FC, Shukitt-Hale B, Joseph JA (2005) The beneficial effects of fruit polyphenols on brain aging. Neurobiol Aging 26:128–132

    Article  PubMed  Google Scholar 

  • Lee CH, Hwang DS, Kim HG, Oh H, Park H, Cho JH, Lee JM, Jang JB, Lee KS, Oh MS (2010) Protective effect of Cyperi rhizoma against 6-hydroxydopamine-induced neuronal damage. J Med Food 13:564–571

    Article  PubMed  CAS  Google Scholar 

  • Li J, Li W, Su J, Liu W, Altura BT, Altura BM (2003) Hydrogen peroxide induces apoptosis in cerebral vascular smooth muscle cells: possible relation to neurodegenerative diseases and strokes. Brain Res Bull 62:101–106

    Article  PubMed  CAS  Google Scholar 

  • Lin Z, Wen J, Zhu T, Fang Y, Gu Q, Zhu W (2008) Chrysogenamide A from an endophytic fungus associated with Cistanche deserticola and its neuroprotective effect on SH-SY5Y Cells. J Antibiot 61(2):81–85

    Article  PubMed  CAS  Google Scholar 

  • MacNee W, Rahman I (2001) Is oxidative stress central to the pathogenisis of chronic obstructive pulmonary disease? Trends Mol Med 7:55–62

    Article  PubMed  CAS  Google Scholar 

  • Marchesi E, Rota C, Fann YC, Chignell CF, Mason RP (1999) Photoreduction of the fluorescent dye 2′,7′-dichlorofluorescein: a spin trapping and direct electron spin resonance study with implications for oxidative stress measurements. Free Radic Biol Med 26:148–161

    Article  PubMed  CAS  Google Scholar 

  • Mario EG, Gabriella K, Peter R, Moussa BHY (1994) Oxidative stress: free radical production in neural degeneration. Pharmacol Ther 63(1):37–122

    Article  Google Scholar 

  • Martin S, Gonzalez-Burgos E, Carretero ME, Gomez-Serranillos MP (2011) Neuroprotective properties of Spanish red wine and its isolated polyphenols on astrocytes. Food Chem 128:40–48

    Article  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  • Muller DPR (1996) Neurological disease. Adv Pharmacol 38:557–580

    Article  Google Scholar 

  • Park SE, Kim S, Kumar S, Kim SJ (2010) Neuroprotective effect of Rosmarinus officinalis extract on human dopaminergic cell line, SH-SY5Y. Cell Mol Neurobiol 30:759–767

    Article  PubMed  Google Scholar 

  • Pechanova O, Bernatova I, Babal P, Martinez MC, Kysela S, Stvrtina S, Andriantsitohaina R (2004) Red wine polyphenols prevent cardiovascular alterations in L-NAME-induced hypertension. J Hypertens 22:155–159

    Google Scholar 

  • Rastogi RP, Shailendra PS, Donat PH, Rajeshwar PS (2010) Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2′,7′-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem Biophys Res Commun 397:603–607

    Article  PubMed  CAS  Google Scholar 

  • Ritz MF, Ratajczak P, Curin Y, Cam E, Mendelowitsch A, Pinet F, Andriantsitohaina R (2008) Chronic treatment with red wine polyphenol compounds mediates neuroprotection in a rat model of ischemic cerebral stroke. J Nutr 138(3): 519–525

    PubMed  CAS  Google Scholar 

  • Sapkota K, Kim S, Park SE, Kim SJ (2011) Detoxified extract of Rhus verniciflua stokes inhibits rotenone-induced apoptosis in human dopaminergic cells, SH-SY5Y. Cell Mol Neurobiol 31(2):213–223

    Article  PubMed  Google Scholar 

  • Schapira AH (1999) Science, medicine, and the future: Parkinson’s disease. Br Med J 318:311–314

    Article  CAS  Google Scholar 

  • Seidl SE, Potashkin JA (2011) The promise of neuroprotective agents in Parkinson’s disease. Front Neurol 2(68):1–19

    Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantification of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  PubMed  CAS  Google Scholar 

  • Son SW, Kim HY, Choi GJ, Lim HK, Jang KS, Lee SO, Lee S, Sung ND, Kim JC (2008) Bikaverin and fusaric acid from Fusarium oxysporum show antioomycete activity against Phytophthora infestans. J Appl Microbiol 104:692–698

    Article  PubMed  CAS  Google Scholar 

  • Spencer JP (2010) The impact of fruit flavonoids on memory and cognition. Br J Nutr 104(3):S40–S47

    Article  PubMed  CAS  Google Scholar 

  • Sunil AG, Kesavanarayanan KS, Kalaivani P, Sathiya S, Ranju V, Jyothi Priya R, Pramila B, Solomon Paul FD, Venkhatesh J, Saravana Babu C (2011) Total oligomeric flavonoids of Cyperus rotundus ameliorates neurological deficits, excitotoxicity and behavioral alterations induced by cerebral ischemic-reperfusion injury in rats. Brain Res Bull 84:394–405

    Article  PubMed  CAS  Google Scholar 

  • Susanne BS, Andreas H, Stefan P, Gunter S (2005) The in vivo comet assay: use and status in genotoxicity testing. Mutagenesis 20(4):245–254

    Article  Google Scholar 

  • Thomas RB, Joy S, Ajayan MS, Paulose CS (2013) Neuroprotective potential of Bacopa monnieri and Bacoside A Against dopamine receptor dysfunction in the cerebral cortex of neonatal hypoglycaemic rats. Cell Mol Neurobiol 33(8):1065–1074

    Article  PubMed  Google Scholar 

  • Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Valko M, Dieter L, Jan M, Mark TDC, Milan M, Joshua T (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84

    Article  PubMed  CAS  Google Scholar 

  • van Acker FA, Schouten O, Haenen GR, van der Vijgh WJ, Bast A (2000) Flavonoids can replace alpha-tocopherol as an antioxidant. FEBS Lett 473:145–148

    Article  PubMed  Google Scholar 

  • Venkataramana M, Chandranayaka S, Anand T, Ayaz M, Rajesh R, Divakara ST, Murali HS, Praksh HS, Rao PVL, Balakrishna K, Murali HS, Batra HV (2014) Zearalenone induced toxicity in SH-SY5Y cells: the role of oxidative stress evidenced by N-acetyl cysteine. Food Chem Toxicol 65:335–342

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Yan J, Chen X, Li J, Yang Y, Weng J, Deng C, Yenari MA (2011) Statins: multiple neuroprotective mechanisms in neurodegenerative diseases. Exp Neurol 230(1):27–34

    Article  PubMed  CAS  Google Scholar 

  • Zádori D, Klivényi P, Szalárdy L, Fülöp F, Toldi J, Vécsei L (2012) Mitochondrial disturbances, excitotoxicity, neuroinflammation and kynurenines: novel therapeutic strategies for neurodegenerative disorders. J Neurol Sci 322(1):187–191

    Article  PubMed  Google Scholar 

  • Zhan J, Burns AM, Liu MX, Faeth SH, Gunatilaka AA (2007) Search for cell motility and angiogenesis inhibitors with potential anticancer activity: beauvericin and other constituents of two endophytic strains of Fusarium oxysporum. J Nat Prod 70:227–232

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang F, Shi JS, Zhou H, Wilson B, Hong JS, Gao HM (2010) Resveratrol protects dopamine neurons against lipopolysaccharide induced neurotoxicity through its anti-inflammatory actions. Mol Pharmacol 78(3):466–477

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to UGC (University Grants Commission), New Delhi, India for providing the financial support under UGC-Major Research Project F. No. 34-244/2008 (SR). Authors are thankful to the Director DFRL, for providing necessary facilities for conducting the experiments.

Conflict of interest

Authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Srinivas.

Additional information

D. Nirmaladevi and M. Venkataramana have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nirmaladevi, D., Venkataramana, M., Chandranayaka, S. et al. Neuroprotective Effects of Bikaverin on H2O2-Induced Oxidative Stress Mediated Neuronal Damage in SH-SY5Y Cell Line. Cell Mol Neurobiol 34, 973–985 (2014). https://doi.org/10.1007/s10571-014-0073-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-014-0073-6

Keywords

Navigation