Skip to main content

Advertisement

Log in

Low-Dose Homocystine Enhances Proliferation and Migration of Bv2 Microglia Cells

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Homocysteine (Hcy) is a non-essential amino acid that is derived from the breakdown of dietary methionine. Hyperhomocysteinemia (HHcy) is an independent risk factor for a variety of chronic diseases, especially neurodegenerative conditions. To better understand the role of HHcy in the pathogenesis of neurodegenerative disorders, we investigated the effect of Hcy on the proliferation and activation of microglia Bv2 cells. Cells were treated with six different Hcy concentrations: 0, 50, 100, 300, 500, and 1000 µM for different time periods (8, 12, 16, 24, and 48 h). The morphology of Bv2 cells was observed, and cell activity and proliferation were detected. Cell migration and secretion of pro-inflammatory cytokines were detected by the scratch wound assay, the transwell assay, and ELISA, respectively. The effect of Hcy on Bv2 proliferation occurred earlier (<24 h, especially 16 h) after treatment with concentrations between 100 and 300 μM, and there was no cytotoxicity to Bv2 cells. Meanwhile, functional assays suggested that Hcy not only promoted Bv2 secretion of the pro-inflammatory cytokines IL-1β, TNF-α, and IL-6, but also enhanced Bv2 migration and invasion, with 100 μM being the most effective concentration. In summary, Bv2 proliferation and activation can be promoted by short-term treatment with low-dose Hcy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amor S, Puentes F, Baker D, van der Valk P (2010) Inflammation in neurodegenerative diseases. Immunology 129:154–169. doi:10.1111/j.1365-2567.2009.03225.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang JK, Sung ML, Yu HR, Chang HI, Kuo HC, Tsai TC, Yen CK, Chen CN (2011) Homocysteine induces smooth muscle cell proliferation through differential regulation of cyclins A and D1 expression. J Cell Physiol 226:1017–1026. doi:10.1002/jcp.22415

    Article  CAS  PubMed  Google Scholar 

  • Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K, Hasegawa K, Hendrie H, Huang Y, Jorm A, Mathers C, Menezes PR, Rimmer E, Scazufca M, Alzheimer’s Disease International (2005) Global prevalence of dementia: a Delphi consensus study. Lancet 366:2112–2117

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao HM, Zhou H, Zhang F, Wilson BC, Kam W, Hong JS (2011) HMGB1 acts on microglia Mac1 to mediate chronic neuroinflammation that drives progressive neurodegeneration. J Neurosci 31:1081–1092. doi:10.1523/JNEUROSCI.3732-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hald A, Lotharius J (2005) Oxidative stress and inflammation in Parkinson’s disease: is there a causal link? Exp Neurol 193:279–290

    Article  CAS  PubMed  Google Scholar 

  • He FQ, Qiu BY, Li TK, Xie Q, de Cui J, Huang XL, Gan HT (2011) Tetrandrine suppresses amyloid-β-induced inflammatory cytokines by inhibiting NF-κB pathway in murine BV2 microglial cells. Int Immunopharmacol 11:1220–1225. doi:10.1016/j.intimp.2011.03.023

    Article  CAS  PubMed  Google Scholar 

  • He GY, Yuan CG, Hao L, Xu Y, Zhang ZX (2014) GBE50 attenuates inflammatory response by inhibiting the p38 MAPK and NF-κ B pathways in LPS-stimulated microglial cells. Evid Based Complement Alternat Med 2014:368598. doi:10.1155/2014/368598

    Article  PubMed  PubMed Central  Google Scholar 

  • Ho SC, Kuo CT (2014) Hesperidin, nobiletin, and tangeretin are collectively responsible for the anti-neuroinflammatory capacity of tangerine peel (Citri reticulatae pericarpium). Food Chem Toxicol 71:176–182. doi:10.1016/j.fct.2014.06.014

    Article  CAS  PubMed  Google Scholar 

  • Jayasooriya RG, Choi YH, Kim GY (2013) Glutamine-free condition inhibits lipopolysaccharide-induced invasion of BV2 microglial cells by suppressing of matrix metalloproteinase-9 expression. Environ Toxicol Pharmacol 36:1127–1132. doi:10.1016/j.etap.2013.09.016

    Article  CAS  PubMed  Google Scholar 

  • Jeong JW, Lee HH, Han MH, Kim GY, Kim WJ, Choi YH (2014) Anti-inflammatory effects of genistein via suppression of the toll-like receptor 4-mediated signaling pathway in lipopolysaccharide-stimulated BV2 microglia. Chem Biol Interact 5:30–39. doi:10.1016/j.cbi.2014.01.012

    Article  Google Scholar 

  • Kaneko YS, Nakashima A, Mori K, Nagatsu T, Nagatsu I, Ota A (2012) Microglial activation in neuroinflammation: implications for the etiology of neurodegeneration. Neurodegener Dis 10:100–103. doi:10.1159/000332936

    Article  CAS  PubMed  Google Scholar 

  • Kerkeni M, Tnani M, Chuniaud L, Miled A, Maaroufi K, Trivin F (2006) Comparative study on in vitro effects of homocysteine thiolactone and homocysteine on HUVEC cells: evidence for a stronger proapoptotic and proinflammative homocysteine thiolactone. Mol Cell Biochem 291:119–126

    Article  CAS  PubMed  Google Scholar 

  • Lee DS, Jeong GS (2014) Arylbenzofuran isolated from Dalbergia odorifera suppresses lipopolysaccharide-induced mouse BV2 microglial cell activation, which protects mouse hippocampal HT22 cells death from neuroinflammation-mediated toxicity. Eur J Pharmacol 5:1–8. doi:10.1016/j.ejphar.2013.12.041

    Google Scholar 

  • Liu H, Huang GW, Zhang XM, Ren DL, Wilson JX (2010) Folic Acid supplementation stimulates notch signaling and cell proliferation in embryonic neural stem cells. J Clin Biochem Nutr 47:174–180. doi:10.3164/jcbn.10-47

    Article  PubMed  PubMed Central  Google Scholar 

  • Louis ED, Schupf N, Tang MX, Marder K, Luchsinger JA (2007) Mild parkinsonian signs and plasma homocysteine concentration in community-dwelling elderly individuals. Arch Neurol 64:1646–1651

    Article  PubMed  Google Scholar 

  • Manolescu BN, Oprea E, Farcasanu IC, Berteanu M, Cercasov C (2010) Homocysteine and vitamin therapy in stroke prevention and treatment: a review. Acta Biochim Pol 57:467–477

    CAS  PubMed  Google Scholar 

  • Minagawa H, Watanabe A, Akatsu H, Adachi K, Ohtsuka C, Terayama Y, Hosono T, Takahashi S, Wakita H, Jung CG, Komano H, Michikawa M (2010) Homocysteine, another risk factor for Alzheimer disease, impairs apolipoprotein E3 function. J Biol Chem 285:38382–38388. doi:10.1074/jbc.M110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry VH, Teeling J (2013) Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin Immunopathol 35:601–612. doi:10.1007/s00281-013-0382-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pietrzik K (2006) Homocysteine as a cardiovascular marker and risk factor. Clin Res Cardiol 95:VI28-33

    Article  PubMed  Google Scholar 

  • Pietrzik K, Brönstrup A (1998) Vitamins B12, B6 and folate as determinants of homocysteine concentration in the healthy population. Eur J Pediatr 157:S135–S138

    Article  CAS  PubMed  Google Scholar 

  • Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55:453–462

    Article  PubMed  PubMed Central  Google Scholar 

  • Shea TB, Lyons-Weiler J, Rogers E (2002) Homocysteine, folate deprivation and Alzheimer neuropathology. J Alzheimers Dis 4:261–267

    CAS  PubMed  Google Scholar 

  • Steele ML, Fuller S, Maczurek AE, Kersaitis C, Ooi L, Münch G (2013) Chronic inflammation alters production and release of glutathione and related thiols in human U373 astroglial cells. Cell Mol Neurobiol 33:19–30. doi:10.1007/s10571-012-9867-6

    Article  CAS  PubMed  Google Scholar 

  • Su X, Chen Q, Chen W, Chen T, Li W, Li Y, Dou X, Zhang Y, Shen Y, Wu H, Yu C (2014) Mycoepoxydiene inhibits activation of BV2 microglia stimulated by lipopolysaccharide through suppressing NF-κB, ERK 1/2 and toll-like receptor pathways. Int Immunopharmacol 19:88–93. doi:10.1016/j.intimp.2014.01.004

    Article  CAS  PubMed  Google Scholar 

  • Xue SN, Lei J, Yang C, Lin DZ, Yan L (2012) The biological behaviors of rat dermal fibroblasts can be inhibited by high levels of MMP9. Exp Diabetes Res 2012:494579. doi:10.1155/2012/494579

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan H, Zhang X, Luo S, Liu H, Wang X, Gao Y, Wilson JX, Huang G (2013) Effects of homocysteine on ERK signaling and cell proliferation in fetal neural stem cells in vitro. Cell Biochem Biophys 66:131–137. doi:10.1007/s12013-012-9461-z

    Article  CAS  PubMed  Google Scholar 

  • Zeng X, Dai J, Remick DG, Wang X (2003) Homocysteine mediated expression and secretion of monocyte chemoattractant protein-1 and interleukin-8 in human monocytes. Circ Res 93:311–320

    Article  CAS  PubMed  Google Scholar 

  • Zhang XM, Huang GW, Tian ZH, Ren DL, Wilson XJ (2009) Folate deficiency induces neural stem cell apoptosis by increasing homocysteine in vitro. J Clin Biochem Nutr 45:14–19. doi:10.3164/jcbn.08-223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou CG, Zhao YS, Gao SY, Li SD, Cao XZ, Zhang M, Zhang KQ (2010a) Homocysteine promotes proliferation and activation of microglia. Neurobiol Aging 31:2069–2079. doi:10.1016/j.neurobiolaging

    Article  CAS  PubMed  Google Scholar 

  • Zou T, Yang W, Hou Z, Yang J (2010b) Homocysteine enhances cell proliferation in vascular smooth muscle cells: role of p38 MAPK and p47phox. Acta Biochim Biophys Sin (Shanghai) 42:908–915. doi:10.1093/abbs/gmq102

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is funded by community-development programs Grant #2012-15-12506, which is supported by the Science and Technology Department of Dandong City.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lishu Wan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, L., Sun, Y., Zhang, F. et al. Low-Dose Homocystine Enhances Proliferation and Migration of Bv2 Microglia Cells. Cell Mol Neurobiol 36, 1279–1289 (2016). https://doi.org/10.1007/s10571-015-0325-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-015-0325-0

Keywords

Navigation