Skip to main content

Advertisement

Log in

Inhibition of Reactive Astrocytes with Fluorocitrate Ameliorates Learning and Memory Impairment Through Upregulating CRTC1 and Synaptophysin in Ischemic Stroke Rats

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Ischemic stroke often causes motor and cognitive deficits. Deregulated glia gap junction communication, which is reflected by increased protein levels of glial fibrillary acidic protein (GFAP) and connexin 43 (Cx43), has been observed in ischemic hippocampus and has been associated with cognitive impairment in animal stroke models. Here, we tested the hypothesis that reactive astrocytes-mediated loss of synaptophysin (SYP) and CREB-regulated transcription coactivator 1 (CRTC1) contribute to dysfunction in glia gap junction communication and memory impairment after ischemic stroke. Male Sprague–Dawley rats were subjected to a 90-min middle cerebral artery occlusion (MCAO) with 7-day reperfusion. Fluorocitrate (1 nmol), the reversible inhibitor of the astrocytic tricarboxylic acid cycle, was injected into the right lateral ventricle of MCAO rats once every 2 days starting immediately before reperfusion. The Morris water maze was used to assess memory in conjunction with western blotting and immunostaining to detect protein expression and distribution in the hippocampus. Our results showed that ischemic stroke caused significant memory impairment accompanied by increased protein levels of GFAP and Cx43 in hippocampal tissue. In addition, the levels of several key memory-related important proteins including SYP, CRTC1, myelin basic protein and high-mobility group-box-1 were significantly reduced in the hippocampal tissue. Of note, inhibition of reactive astrocytes with fluorocitrate was shown to significantly reverse the above noted changes induced by ischemic stroke. Taken together, our findings demonstrate that inhibiting reactive astrocytes with fluorocitrate immediately before reperfusion may protect against ischemic stroke-induced memory impairment through the upregulation of CRTC1 and SYP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CRTC1:

CREB-regulated transcription coactivator 1

Cx43:

Connexin 43

FC:

Fluorocitrate

GFAP:

Glial fibrillary acidic protein

GJC:

Glia gap junction communication

HMGB1:

High-mobility group-box-1

MBP:

Myelin basic protein

MCAO:

Middle cerebral artery occlusion

SYP:

Synaptophysin

References

  • Adamsky A, Goshen I (2018) Astrocytes in memory function: pioneering findings and future directions. Neuroscience 370:14–26

    Article  CAS  PubMed  Google Scholar 

  • Altarejos JY et al (2008) The Creb1 coactivator Crtc1 is required for energy balance and fertility. Nat Med 14(10):1112–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakker FC, Klijn CJ, Jennekens-Schinkel A, Kappelle LJ (2000) Cognitive disorders in patients with occlusive disease of the carotid artery: a systematic review of the literature. J Neurol 247(9):669–676

    Article  CAS  PubMed  Google Scholar 

  • Baron JC (2018) Protecting the ischaemic penumbra as an adjunct to thrombectomy for acute stroke. Nat Rev Neurol 14(6):325–337

    Article  CAS  PubMed  Google Scholar 

  • Bingham D, Martin SJ, Macrae IM, Carswell HV (2012) Watermaze performance after middle cerebral artery occlusion in the rat: the role of sensorimotor versus memory impairments. J Cereb Blood Flow Metab 32(6):989–999

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouet V, Freret T, Toutain J, Divoux D, Boulouard M, Schumann-Bard P (2007) Sensorimotor and cognitive deficits after transient middle cerebral artery occlusion in the mouse. Exp Neurol 203(2):555–567

    Article  PubMed  Google Scholar 

  • Cain DP, Boon F (2003) Detailed behavioral analysis reveals both task strategies and spatial memory impairments in rats given bilateral middle cerebral artery stroke. Brain Res 972(1–2):64–74

    Article  CAS  PubMed  Google Scholar 

  • Clarke DD, Nicklas WJ, Berl S (1970) Tricarboxylic acid-cycle metabolism in brain. Effect of fluoroacetate and fluorocitrate on the labelling of glutamate, aspartate, glutamine and gamma-aminobutyrate. Biochem J 120(2):345–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damodaran T et al (2014) Time course of motor and cognitive functions after chronic cerebral ischemia in rats. Behav Brain Res 275:252–258

    Article  PubMed  Google Scholar 

  • Das S, Mishra KP, Ganju L, Singh SB (2017) Andrographolide—a promising therapeutic agent, negatively regulates glial cell derived neurodegeneration of prefrontal cortex, hippocampus and working memory impairment. J Neuroimmunol 313:161–175

    Article  CAS  PubMed  Google Scholar 

  • D’Hooge R, De Deyn PP (2001) Applications of the morris water maze in the study of learning and memory. Brain Res Rev 36(1):60–90

    Article  PubMed  Google Scholar 

  • Ding S (2014) Dynamic reactive astrocytes after focal ischemia. Neural Regener Res 9(23):2048–2052

    Article  Google Scholar 

  • Espana J et al (2010) Beta-Amyloid disrupts activity-dependent gene transcription required for memory through the CREB coactivator CRTC1. J Neurosci 30(28):9402–9410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faraco G et al (2007) High mobility group box 1 protein is released by neural cells upon different stresses and worsens ischemic neurodegeneration in vitro and in vivo. J Neurochem 103(2):590–603

    Article  CAS  PubMed  Google Scholar 

  • Fonteles AA et al (2016) Rosmarinic acid prevents against memory deficits in ischemic mice. Behav Brain Res 297:91–103

    Article  CAS  PubMed  Google Scholar 

  • Gibbs ME, Bowser DN (2009) Astrocytes and interneurons in memory processing in the chick hippocampus: roles for G-coupled protein receptors, GABA(B) and mGluR1. Neurochem Res 34(10):1712–1720

    Article  CAS  PubMed  Google Scholar 

  • Halder SK, Ueda H (2018) Amlexanox inhibits cerebral ischemia-induced delayed astrocytic high-mobility group box 1 release and subsequent brain damage. J Pharmacol Exp Ther 365(1):27–36

    Article  CAS  PubMed  Google Scholar 

  • Han B, Hu J, Shen J, Gao Y, Lu Y, Wang T (2013) Neuroprotective effect of hydroxysafflor yellow A on 6-hydroxydopamine-induced Parkinson’s disease in rats. Eur J Pharmacol 714(1–3):83–88

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa K et al (2010a) Inhibition of reactive astrocytes with fluorocitrate retards neurovascular remodeling and recovery after focal cerebral ischemia in mice. J Cereb Blood Flow Metab 30(4):871–882

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa K, Qiu J, Lo EH (2010b) Biphasic actions of HMGB1 signaling in inflammation and recovery after stroke. Ann NY Acad Sci 1207(1):50–57

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa K, Pham LD, Katusic ZS, Arai K, Lo EH (2012) Astrocytic high-mobility group box 1 promotes endothelial progenitor cell-mediated neurovascular remodeling during stroke recovery. Proc Natl Acad Sci USA 109(19):7505–7510

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa K, Miyamoto N, Seo JH, Pham LD, Kim KW, Lo EH, Arai K (2013) High-mobility group box 1 from reactive astrocytes enhances the accumulation of endothelial progenitor cells in damaged white matter. J Neurochem 125(2):273–280

    Article  CAS  PubMed  Google Scholar 

  • Hosoi R, Okada M, Hatazawa J, Gee A, Inoue O (2004) Effect of astrocytic energy metabolism depressant on 14C-acetate uptake in intact rat brain. J Cereb Blood Flow Metab 24(2):188–190

    Article  CAS  PubMed  Google Scholar 

  • Hosoi R, Kashiwagi Y, Hatazawa J, Gee A, Inoue O (2006) Glial metabolic dysfunction caused neural damage by short-term ischemia in brain. Ann Nucl Med 20(5):377–380

    Article  PubMed  Google Scholar 

  • Kim JB et al (2006) HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J Neurosci 26(24):6413–6421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai S, Wu G, Jiang Z (2018) Glycyrrhizin treatment facilitates extinction of conditioned fear responses after a single prolonged stress exposure in rats. Cell Physiol Biochem 45(6):2529–2539

    Article  CAS  PubMed  Google Scholar 

  • Li W et al (2013) Transient focal cerebral ischemia induces long-term cognitive function deficit in an experimental ischemic stroke model. Neurobiol Dis 59:18–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Sun L, Li Y, Xie C, Wan D, Luo Y (2014) Oxygen glucose deprivation/reperfusion astrocytes promotes primary neural stem/progenitor cell proliferation by releasing high-mobility group box 1. Neurochem Res 39(8):1440–1450

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Chopp M (2016) Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog Neurobiol 144:103–120

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Liu W, Ding W, Miyake M, Rosenberg GA, Liu KJ (2006) Electron paramagnetic resonance-guided normobaric hyperoxia treatment protects the brain by maintaining penumbral oxygenation in a rat model of transient focal cerebral ischemia. J Cereb Blood Flow Metab 26(10):1274–1284

    Article  CAS  PubMed  Google Scholar 

  • Liu L et al (2010) The neuroprotective effects of Tanshinone IIA are associated with induced nuclear translocation of TORC1 and upregulated expression of TORC1, pCREB and BDNF in the acute stage of ischemic stroke. Brain Res Bull 82(3–4):228–233

    Article  CAS  PubMed  Google Scholar 

  • Liu Y et al (2017) Normobaric hyperoxia extends neuro- and vaso-protection of N-acetylcysteine in transient focal ischemia. Mol Neurobiol 54(5):3418–3427

    Article  CAS  PubMed  Google Scholar 

  • Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5(4):331–342

    Article  CAS  Google Scholar 

  • Mair W, Morantte I, Rodrigues AP, Manning G, Montminy M, Shaw RJ, Dillin A (2011) Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature 470(7334):404–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nonaka M et al (2014) Region-specific activation of CRTC1-CREB signaling mediates long-term fear memory. Neuron 84(1):92–106

    Article  CAS  PubMed  Google Scholar 

  • Parra-Damas A et al (2016) CRTC1 function during memory encoding is disrupted in neurodegeneration. Biol Psychiatry 81(2):111–123

    Article  CAS  PubMed  Google Scholar 

  • Paulsen RE, Contestabile A, Villani L, Fonnum F (1987) An in vivo model for studying function of brain tissue temporarily devoid of glial cell metabolism: the use of fluorocitrate. J Neurochem 48(5):1377–1385

    Article  CAS  PubMed  Google Scholar 

  • Pena-Ortega F, Rivera-Angulo AJ, Lorea-Hernandez JJ (2016) Pharmacological tools to study the role of astrocytes in neural network functions. Adv Exp Med Biol 949:47–66

    Article  CAS  PubMed  Google Scholar 

  • Qiu J et al (2010) High-mobility group box 1 promotes metalloproteinase-9 upregulation through Toll-like receptor 4 after cerebral ischemia. Stroke 41(9):2077–2082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ran Y et al (2018) Splenectomy fails to provide long-term protection against ischemic stroke. Aging Dis 9(3):467–479

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez Diaz M, Alonso TJ, Perdomo Diaz J, Gonzalez Hernandez T, Castro Fuentes R, Sabate M, Garcia Dopico J (2005) Glial regulation of nonsynaptic extracellular glutamate in the substantia nigra. Glia 49(1):134–142

    Article  PubMed  Google Scholar 

  • Sasaki T et al (2011) SIK2 is a key regulator for neuronal survival after ischemia via TORC1-CREB. Neuron 69(1):106–119

    Article  CAS  PubMed  Google Scholar 

  • Shang XL et al (2015) Fluorocitrate induced the alterations of memory-related proteins and tau hyperphosphorylation in SD rats. Neurosci Lett 584:230–235

    Article  CAS  PubMed  Google Scholar 

  • Shen X et al (2018) Chronic N-acetylcysteine treatment alleviates acute lipopolysaccharide-induced working memory deficit through upregulating caveolin-1 and synaptophysin in mice. Psychopharmacology 235(1):179–191

    Article  CAS  PubMed  Google Scholar 

  • Shu H et al (2015) Activation of matrix metalloproteinase in dorsal hippocampus drives improvement in spatial working memory after intra-VTA nicotine infusion in rats. J Neurochem 135(2):357–367

    Article  CAS  PubMed  Google Scholar 

  • Smith TD, Adams MM, Gallagher M, Morrison JH, Rapp PR (2000) Circuit-specific alterations in hippocampal synaptophysin immunoreactivity predict spatial learning impairment in aged rats. J Neurosci 20(17):6587–6593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stehberg J et al (2012) Release of gliotransmitters through astroglial connexin 43 hemichannels is necessary for fear memory consolidation in the basolateral amygdala. FASEB J 26(9):3649–3657

    Article  CAS  PubMed  Google Scholar 

  • Stoll G, Jander S, Schroeter M (2002) Detrimental and beneficial effects of injury-induced inflammation and cytokine expression in the nervous system. Adv Exp Med Biol 513:87–113

    CAS  PubMed  Google Scholar 

  • Sun Y et al (2017) β2-adrenergic receptor-mediated HIF-1alpha upregulation mediates blood brain barrier damage in acute cerebral ischemia. Front Mol Neurosci 10:257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson RA, Graham SH (1994) Fluorocitrate and fluoroacetate effects on astrocyte metabolism in vitro. Brain Res 664(1–2):94–100

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Redecker C, Bidmon HJ, Witte OW (2004) Delayed neuronal death and damage of GDNF family receptors in CA1 following focal cerebral ischemia. Brain Res 1023(1):92–101

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Li CC, Wang GW, Cai JX (2009) The effects of centrally administered fluorocitrate via inhibiting glial cells on working memory in rats. Sci China C 52(8):701–709

    Article  CAS  Google Scholar 

  • Wang X et al (2017a) Melatonin alleviates lipopolysaccharide-compromised integrity of blood-brain barrier through activating AMP-activated protein kinase in old mice. Aging Cell 16(2):414–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Liu G, Hong D, Chen F, Ji X, Cao G (2017b) White matter injury in ischemic stroke. Prog Neurobiol 141:45–60

    Article  Google Scholar 

  • Wang Y, Xie L, Gao C, Zhai L, Zhang N, Guo L (2018) Astrocytes activation contributes to the antidepressant-like effect of ketamine but not scopolamine. Pharmacol, Biochem Behav 170:1–8

    Article  CAS  Google Scholar 

  • Xie M et al (2011) Glial gap junctional communication involvement in hippocampal damage after middle cerebral artery occlusion. Ann Neurol 70(1):121–132

    Article  PubMed  Google Scholar 

  • Xie ZF, Xin G, Xu YX, Su Y, Li KS (2016) LPS-primed release of HMGB-1 from cortical astrocytes is modulated through PI3 K/AKT pathway. Cell Mol Neurobiol 36(1):93–102

    Article  CAS  PubMed  Google Scholar 

  • Xue ZC, Wang C, Wang QW, Zhang JF (2015) CREB-regulated transcription coactivator 1: important roles in neurodegenerative disorders. Sheng Li Xue Bao 67(2):155–162

    CAS  PubMed  Google Scholar 

  • Yang Y et al (2018) H6, a novel hederagenin derivative, reverses multidrug resistance in vitro and in vivo. Toxicol Appl Pharmacol 341:98–105

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Zou L, Tian J, Lin F, He J, Hou J (2014) Protective effects of sulphonated formononetin in a rat model of cerebral ischemia and reperfusion injury. Planta Med 80(04):262–268

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported, by National Natural Science Foundation of China (81870973, 81671145, 81701316, 81873747), by Jiangsu Provincial College of Natural Science research project (17KJB180012), by Suzhou Science and Technology for People’s Livelihood (SYS2018025), by Natural Science Foundation of Guangdong Province (2016A030313027), by grants from Shenzhen Science & Technology Commission grants (JCYJ20170306093243010 and JCYJ20170413165705083).

Author information

Authors and Affiliations

Authors

Contributions

This work was performed and accomplished by all authors. XZ, XS, JD, WCL, MS, YS, and HS contributed to the execution of the entire research project and the statistical analyses. XZ, XS, JD, WCL, CLT, WL, CFL, and XJ wrote the manuscript. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Wenlan Liu, Chun-Feng Liu or Xinchun Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Shen, X., Dong, J. et al. Inhibition of Reactive Astrocytes with Fluorocitrate Ameliorates Learning and Memory Impairment Through Upregulating CRTC1 and Synaptophysin in Ischemic Stroke Rats. Cell Mol Neurobiol 39, 1151–1163 (2019). https://doi.org/10.1007/s10571-019-00709-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-019-00709-0

Keywords

Navigation