Skip to main content
Log in

Mitotic kinase cascades orchestrating timely disjunction and movement of centrosomes maintain chromosomal stability and prevent cancer

  • Review
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Centrosomes are microtubule-organizing centers that duplicate in S phase to form bipolar spindles that separate duplicated chromosomes faithfully into two daughter cells during cell division. Recent studies show that proper timing of centrosome dynamics, the disjunction and movement of centrosomes, is tightly linked to spindle symmetry, correct microtubule-kinetochore attachment, and chromosome segregation. Here, we review mechanisms that regulate centrosome dynamics, with emphasis on the roles of key mitotic kinases in the proper timing of centrosome dynamics and how aberrancies in these processes may cause chromosomal instability and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Cdk1:

Cyclin-dependent kinase 1

Cep85:

Centrosome protein 85 KDa

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

GRK2:

G protein-coupled receptor kinase 2

Sav1:

Scaffold protein Salvador

KT:

Kinetochore

MEF:

Mouse embryonic fibroblast

Mst2:

Mammalian sterile 20-like kinase 2

NE:

Nuclear envelope

NEBD:

Nuclear envelope breakdown

Nek2A:

NIMA family kinase 2A

NIMA:

Never in Mitosis A

NPC:

Nuclear pore complex

PCM:

Pericentriolar material

Plk1:

Polo-like kinase 1

TEIF:

Transcriptional element-interacting factor

References

  • Azimzadeh J, Bornens M (2007) Structure and duplication of the centrosome. J Cell Sci 120:2139–2142

    Article  PubMed  CAS  Google Scholar 

  • Bahe S, Stierhof YD, Wilkinson CJ, Leiss F, Nigg EA (2005) Rootletin forms centriole-associated filaments and functions in centrosome cohesion. J Cell Biol 171:27–33

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bahmanyar S, Kaplan DD, Deluca JG, Giddings TH Jr, O’toole ET, Winey M, Salmon ED, Casey PJ, Nelson WJ, Barth AI (2008) Beta-catenin is a Nek2 substrate involved in centrosome separation. Genes Dev 22:91–105

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Basto R, Lau J, Vinogradova T, Gardiol A, Woods CG, Khodjakov A, Raff JW (2006) Flies without centrioles. Cell 125:1375–1386

    Article  PubMed  CAS  Google Scholar 

  • Beaudouin J, Gerlich D, Daigle N, Eils R, Ellenberg J (2002) Nuclear envelope breakdown proceeds by microtubule-induced tearing of the lamina. Cell 108:83–96

    Article  PubMed  CAS  Google Scholar 

  • Belham C, Roig J, Caldwell JA, Aoyama Y, Kemp BE, Comb M, Avruch J (2003) A mitotic cascade of NIMA family kinases: Nercc1/Nek9 activates the Nek6 and Nek7 kinases. J Biol Chem 278:34897–34909

    Article  PubMed  CAS  Google Scholar 

  • Bertran MT, Sdelci S, Regue L, Avruch J, Caelles C, Roig J (2011) Nek9 is a Plk1-activated kinase that controls early centrosome separation through Nek6/7 and Eg5. EMBO J 30:2634–2647

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bettencourt-Dias M, Glover DM (2007) Centrosome biogenesis and function: centrosomics brings new understanding. Nat Rev Mol Cell Biol 8:451–463

    Article  PubMed  CAS  Google Scholar 

  • Blangy A, Lane HA, D’herin P, Harper M, Kress M, Nigg EA (1995) Phosphorylation by P34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83:1159–1169

    Article  PubMed  CAS  Google Scholar 

  • Bornens M (2012) The centrosome in cells and organisms. Science 335:422–426

    Article  PubMed  CAS  Google Scholar 

  • Brandeis M, Rosewell I, Carrington M, Crompton T, Jacobs MA, Kirk J, Gannon J, Hunt T (1998) Cyclin B2-null mice develop normally and are fertile whereas cyclin B1-null mice die in utero. Proc Natl Acad Sci U S A 95:4344–4349

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bruinsma W, Raaijmakers JA, Medema RH (2012) Switching polo-like kinase-1 on and off in time and space. Trends Biochem Sci 37:534–542

    Article  PubMed  CAS  Google Scholar 

  • Castillo A, Morse HC 3rd, Godfrey VL, Naeem R, Justice MJ (2007) Overexpression of Eg5 causes genomic instability and tumor formation in mice. Cancer Res 67:10138–10147

    Article  PubMed  CAS  Google Scholar 

  • Chen XJ, Levedakou EN, Millen KJ, Wollmann RL, Soliven B, Popko B (2007) Proprioceptive sensory neuropathy in mice with a mutation in the cytoplasmic dynein heavy chain 1 gene. J Neurosci 27:14515–14524

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Tian F, Lu L, Wang Y, Xiao Z, Yu C, Yu X (2015) Characterization of Cep85: a novel antagonist of Nek2a that is involved in the regulation of centrosome disjunction. J Cell Sci

  • Chilov D, Sinjushina N, Rita H, Taketo MM, Makela TP, Partanen J (2011) Phosphorylated beta-catenin localizes to centrosomes of neuronal progenitors and is required for cell polarity and neurogenesis in developing midbrain. Dev Biol 357:259–268

    Article  PubMed  CAS  Google Scholar 

  • De Souza EE, Meirelles GV, Godoy BB, Perez AM, Smetana JH, Doxsey SJ, Mccomb ME, Costello CE, Whelan SA, Kobarg J (2014) Characterization of the human Nek7 interactome suggests catalytic and regulatory properties distinct from those of Nek6. J Proteome Res 13:4074–4090

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dohadwala M, Da Cruz e Silva EF, Hall FL, Williams RT, Carbonaro-Hall DA, Nairn AC, Greengard P, Berndt N (1994) Phosphorylation and inactivation of protein phosphatase 1 by cyclin-dependent kinases. Proc Natl Acad Sci U S A 91:6408–6412

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Feige E, Motro B (2002) The related murine kinases, Nek6 and Nek7, display distinct patterns of expression. Mech Dev 110:219–223

    Article  PubMed  CAS  Google Scholar 

  • Fry AM, Mayor T, Meraldi P, Stierhof YD, Tanaka K, Nigg EA (1998) C-Nap1, a novel centrosomal coiled-coil protein and candidate substrate of the cell cycle-regulated protein kinase Nek2. J Cell Biol 141:1563–1574

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gayek AS, Ohi R (2014) Kinetochore-microtubule stability governs the metaphase requirement for Eg5. Mol Biol Cell 25:2051–2060

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gonczy P, Pichler S, Kirkham M, Hyman AA (1999) Cytoplasmic dynein is required for distinct aspects of Mtoc positioning, including centrosome separation, in the one cell stage caenorhabditis elegans embryo. J Cell Biol 147:135–150

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Graser S, Stierhof YD, Nigg EA (2007) Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion. J Cell Sci 120:4321–4331

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Zheng Y (2015) Lamins position the nuclear pores and centrosomes by modulating dynein. Mol Biol Cell

  • Hadjihannas MV, Bruckner M, Behrens J (2010) Conductin/Axin2 and Wnt signalling regulates centrosome cohesion. EMBO Rep 11:317–324

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hafezparast M, Klocke R, Ruhrberg C, Marquardt A, Ahmad-Annuar A, Bowen S, Lalli G, Witherden AS, Hummerich H, Nicholson S, Morgan PJ, Oozageer R, Priestley JV, Averill S, King VR, Ball S, Peters J, Toda T, Yamamoto A, Hiraoka Y, Augustin M, Korthaus D, Wattler S, Wabnitz P, Dickneite C, Lampel S, Boehme F, Peraus G, Popp A, Rudelius M, Schlegel J, Fuchs H, Hrabe De Angelis M, Schiavo G, Shima DT, Russ AP, Stumm G, Martin JE, Fisher EM (2003) Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science 300:808–812

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  • Hardy T, Lee M, Hames RS, Prosser SL, Cheary DM, Samant MD, Schultz F, Baxter JE, Rhee K, Fry AM (2014) Multisite phosphorylation of C-Nap1 releases it from Cep135 to trigger centrosome disjunction. J Cell Sci 127:2493–2506

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • He R, Huang N, Bao Y, Zhou H, Teng J, Chen J (2013) Lrrc45 is a centrosome linker component required for centrosome cohesion. Cell Rep 4:1100–1107

    Article  PubMed  CAS  Google Scholar 

  • Hinchcliffe EH, Miller FJ, Cham M, Khodjakov A, Sluder G (2001) Requirement of a centrosomal activity for cell cycle progression through G1 into S phase. Science 291:1547–1550

    Article  PubMed  CAS  Google Scholar 

  • Hochegger H, Takeda S, Hunt T (2008) Cyclin-dependent kinases and cell-cycle transitions: does one fit all? Nat Rev Mol Cell Biol 9:910–916

    Article  PubMed  CAS  Google Scholar 

  • Huang P, Senga T, Hamaguchi M (2007) A novel role of phospho-beta-catenin in microtubule regrowth at centrosome. Oncogene 26:4357–4371

    Article  PubMed  CAS  Google Scholar 

  • Kapitein LC, Peterman EJG, Kwok BH, Kim JH, Kapoor TM, Schmidt CF (2005) The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature 435:114–118

    Article  PubMed  CAS  Google Scholar 

  • Kaplan DD, Meigs TE, Kelly P, Casey PJ (2004) Identification of a role for beta-catenin in the establishment of a bipolar mitotic spindle. J Biol Chem 279:10829–10832

    Article  PubMed  CAS  Google Scholar 

  • Kardon JR, Vale RD (2009) Regulators of the cytoplasmic dynein motor. Nat Rev Mol Cell Biol 10:854–865

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Khodjakov A, Cole RW, Oakley BR, Rieder CL (2000) Centrosome-independent mitotic spindle formation in vertebrates. Curr Biol 10:59–67

    Article  PubMed  CAS  Google Scholar 

  • Kiyomitsu T, Cheeseman IM (2012) Chromosome- and spindle-pole-derived signals generate an intrinsic code for spindle position and orientation. Nat Cell Biol 14:311–317

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kotak S, Busso C, Gonczy P (2012) Cortical dynein is critical for proper spindle positioning in human cells. J Cell Biol 199:97–110

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Le Guellec R, Paris J, Couturier A, Roghi C, Philippe M (1991) Cloning by differential screening of a Xenopus Cdna that encodes a kinesin-related protein. Mol Cell Biol 11:3395–3398

    Article  PubMed Central  PubMed  Google Scholar 

  • Lindqvist A, Rodriguez-Bravo V, Medema RH (2009) The decision to enter mitosis: feedback and redundancy in the mitotic entry network. J Cell Biol

  • Liu D, Davydenko O, Lampson MA (2012) Polo-like kinase-1 regulates kinetochore-microtubule dynamics and spindle checkpoint silencing. J Cell Biol 198:491–499

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mardin BR, Schiebel E (2012) Breaking the ties that bind: new advances in centrosome biology. J Cell Biol 197:11–18

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mardin BR, Lange C, Baxter JE, Hardy T, Scholz SR, Fry AM, Schiebel E (2010) Components of the hippo pathway cooperate with Nek2 kinase to regulate centrosome disjunction. Nat Cell Biol 12:1166–1176

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mardin BR, Agircan FG, Lange C, Schiebel E (2011) Plk1 controls the Nek2a-Pp1gamma antagonism in centrosome disjunction. Curr Biol 21:1145–1151

    Article  PubMed  CAS  Google Scholar 

  • Mardin BR, Isokane M, Cosenza MR, Kramer A, Ellenberg J, Fry AM, Schiebel E (2013) EGF-induced centrosome separation promotes mitotic progression and cell survival. Dev Cell 25:229–240

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Marshall WF, Rosenbaum JL (1999) Cell division: the renaissance of the centriole. Curr Biol 9:R218–R220

    Article  PubMed  CAS  Google Scholar 

  • Mayor T, Stierhof YD, Tanaka K, Fry AM, Nigg EA (2000) The centrosomal protein C-Nap1 is required for cell cycle-regulated centrosome cohesion. J Cell Biol 151:837–846

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Meraldi P, Nigg EA (2001) Centrosome cohesion is regulated by a balance of kinase and phosphatase activities. J Cell Sci 114:3749–3757

    PubMed  CAS  Google Scholar 

  • Meraldi P, Nigg EA (2002) The centrosome cycle. FEBS Lett 521:9–13

    Article  PubMed  CAS  Google Scholar 

  • Minoguchi S, Minoguchi M, Yoshimura A (2003) Differential control of the NIMA-related kinases, Nek6 and Nek7, by serum stimulation. Biochem Biophys Res Commun 301:899–906

    Article  PubMed  CAS  Google Scholar 

  • Nam HJ, Van Deursen JM (2014) Cyclin B2 and P53 control proper timing of centrosome separation. Nat Cell Biol 16:538–549

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nigg EA (2007) Centrosome duplication: of rules and licenses. Trends Cell Biol 17:215–221

    Article  PubMed  CAS  Google Scholar 

  • Nigg EA, Raff JW (2009) Centrioles, centrosomes, and cilia in health and disease. Cell 139:663–678

    Article  PubMed  CAS  Google Scholar 

  • Nigg EA, Stearns T (2011) The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol 13:1154–1160

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • O’regan L, Fry AM (2009) The Nek6 and Nek7 protein kinases are required for robust mitotic spindle formation and cytokinesis. Mol Cell Biol 29:3975–3990

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Prosser SL, Sahota NK, Pelletier L, Morrison CG, Fry AM (2015) Nek5 promotes centrosome integrity in interphase and loss of centrosome cohesion in mitosis. J Cell Biol 209:339–348

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Raaijmakers JA, Tanenbaum ME, Medema RH (2013) Systematic dissection of dynein regulators in mitosis. J Cell Biol 201:201–215

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rapley J, Nicolas M, Groen A, Regue L, Bertran MT, Caelles C, Avruch J, Roig J (2008) The NIMA-family kinase Nek6 phosphorylates the kinesin Eg5 at a novel site necessary for mitotic spindle formation. J Cell Sci 121:3912–3921

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Regue L, Sdelci S, Bertran MT, Caelles C, Reverter D, Roig J (2011) Dynll/Lc8 protein controls signal transduction through the Nek9/Nek6 signaling module by regulating Nek6 binding to Nek9. J Biol Chem 286:18118–18129

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Robinson JT, Wojcik EJ, Sanders MA, Mcgrail M, Hays TS (1999) Cytoplasmic dynein is required for the nuclear attachment and migration of centrosomes during mitosis in drosophila. J Cell Biol 146:597–608

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Roig J, Mikhailov A, Belham C, Avruch J (2002) Nercc1, a mammalian NIMA-family kinase, binds the ran Gtpase and regulates mitotic progression. Genes Dev 16:1640–1658

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Roig J, Groen A, Caldwell J, Avruch J (2005) Active Nercc1 protein kinase concentrates at centrosomes early in mitosis and is necessary for proper spindle assembly. Mol Biol Cell 16:4827–4840

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rosenblatt J, Cramer LP, Baum B, Mcgee KM (2004) Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly. Cell 117:361–372

    Article  PubMed  CAS  Google Scholar 

  • Salem H, Rachmin I, Yissachar N, Cohen S, Amiel A, Haffner R, Lavi L, Motro B (2010) Nek7 kinase targeting leads to early mortality, cytokinesis disturbance and polyploidy. Oncogene 29:4046–4057

    Article  PubMed  CAS  Google Scholar 

  • Silkworth WT, Nardi IK, Paul R, Mogilner A, Cimini D (2012) Timing of centrosome separation is important for accurate chromosome segregation. Mol Biol Cell 23:401–411

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Smith E, Hegarat N, Vesely C, Roseboom I, Larch C, Streicher H, Straatman K, Flynn H, Skehel M, Hirota T, Kuriyama R, Hochegger H (2011) Differential control of Eg5-dependent centrosome separation by Plk1 and Cdk1. EMBO J 30:2233–2245

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • So CH, Michal A, Komolov KE, Luo J, Benovic JL (2013) G protein-coupled receptor kinase 2 (Grk2) is localized to centrosomes and mediates epidermal growth factor-promoted centrosomal separation. Mol Biol Cell 24:2795–2806

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Splinter D, Tanenbaum ME, Lindqvist A, Jaarsma D, Flotho A, Yu KL, Grigoriev I, Engelsma D, Haasdijk ED, Keijzer N, Demmers J, Fornerod M, Melchior F, Hoogenraad CC, Medema RH, Akhmanova A (2010) Bicaudal D2, dynein, and kinesin-1 associate with nuclear pore complexes and regulate centrosome and nuclear positioning during mitotic entry. Plos Biol 8, E1000350

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Suijkerbuijk SJ, Vleugel M, Teixeira A, Kops GJ (2012) Integration of kinase and phosphatase activities by Bubr1 ensures formation of stable kinetochore-microtubule attachments. Dev Cell 23:745–755

    Article  PubMed  CAS  Google Scholar 

  • Tanenbaum ME, Medema RH (2010) Mechanisms of centrosome separation and bipolar spindle assembly. Dev Cell 19:797–806

    Article  PubMed  CAS  Google Scholar 

  • Tanenbaum ME, Macurek L, Galjart N, Medema RH (2008) Dynein, Lis1 and Clip-170 counteract Eg5-dependent centrosome separation during bipolar spindle assembly. EMBO J 27:3235–3245

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tanenbaum ME, Akhmanova A, Medema RH (2010) Dynein at the nuclear envelope. EMBO Rep 11:649

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Toso A, Winter JR, Garrod AJ, Amaro AC, Meraldi P, Mcainsh AD (2009) Kinetochore-generated pushing forces separate centrosomes during bipolar spindle assembly. J Cell Biol 184:365–372

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Van Heesbeen RG, Raaijmakers JA, Tanenbaum ME, Medema RH (2013) Nuclear envelope-associated dynein cooperates with Eg5 to drive prophase centrosome separation. Commun Integr Biol 6, E23841

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wang G, Jiang Q, Zhang C (2014) The role of mitotic kinases in coupling the centrosome cycle with the assembly of the mitotic spindle. J Cell Sci 127:4111–4122

    Article  PubMed  CAS  Google Scholar 

  • Yissachar N, Salem H, Tennenbaum T, Motro B (2006) Nek7 kinase is enriched at the centrosome, and is required for proper spindle assembly and mitotic progression. FEBS Lett 580:6489–6495

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Foreman O, Wigle DA, Kosari F, Vasmatzis G, Salisbury JL, Van Deursen J, Galardy PJ (2012) Usp44 regulates centrosome positioning to prevent aneuploidy and suppress tumorigenesis. J Clin Invest 122:4362–4374

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhao J, Zou Y, Liu H, Wang H, Zhang H, Hou W, Li X, Jia X, Zhang J, Hou L, Zhang B (2014) TEIF associated centrosome activity is regulated by Egf/Pi3k/Akt signaling. Biochim Biophys Acta 1843:1851–1864

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institutes of Health (CA126828 and CA168709 to J.M.v.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan M. van Deursen.

Additional information

Responsible Editor: Daniela Cimini and Giulia Guarguaglini

Janine H. van Ree and Hyun-Ja Nam shared first authors with equal contributions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Ree, J.H., Nam, HJ. & van Deursen, J.M. Mitotic kinase cascades orchestrating timely disjunction and movement of centrosomes maintain chromosomal stability and prevent cancer. Chromosome Res 24, 67–76 (2016). https://doi.org/10.1007/s10577-015-9501-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-015-9501-9

Keywords

Navigation