Skip to main content

Advertisement

Log in

Detection Time for Plausible Changes in Annual Precipitation, Evapotranspiration, and Streamflow in Three Mississippi River Sub-Basins

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

We use diagnostic studies of off-line variable infiltration capacity (VIC) model simulations of terrestrial water budgets and 21st-century climate change simulations using the parallel climate model (PCM) to estimate the time required to detect predicted changes in annual precipitation (P), evapotranspiration (E), and discharge (Q) in three sub-basins of the Mississippi River Basin. Time series lengths on the order of 50–350 years are required to detect plausible P, E, and Q trends in the Missouri, Ohio, and Upper Mississippi River basins. Approximately 80–160, 50, and 140–350 years, respectively, are needed to detect the predicted P, E, and Q trends with a high degree of statistical confidence. These detection time estimates are based on conservative statistical criteria (α = 0.05 and β = 0.10) associated with low probability of both detecting a trend when it is not occurring (Type I error) and not detecting a trend when it is occurring (Type II error). The long detection times suggest that global-warming-induced changes in annual basin-wide hydro-climatic variables that may already be occurring in the three basins probably cannot yet be detected at this level of confidence. Furthermore, changes for some variables that may occur within the 21st century might not be detectable for many decades or until the following century – this may or may not be the case for individual recording station data. The long detection times for streamflow result from comparatively low signal-to-noise ratios in the annual time series. Finally, initial estimates suggest that faster detection of acceleration in the hydrological cycle may be possible using seasonal time series of appropriate hydro-climatic variables, rather than annual time series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdulla, F. A., Lettenmaier, D. P., Wood, E. F., and Smith, J. A.: 1996, ‘Application of a macroscale hydrologic model to estimate the water balance of the Arkansas-Red River Basin’, J. Geophys. Res. 101, 7449–7459.

    Article  Google Scholar 

  • Arora, V. K. and Boer, G. J.: 2001, ‘Effects of simulated climate change on the hydrology of major river basins’, J. Geophys. Res. 106(D4), 3335–3348.

    Article  Google Scholar 

  • Brutsaert, W. and Parlange, M. B.: 1998, ‘Hydrologic cycle explains the evaporation paradox’, Nature 396, 30.

    Article  Google Scholar 

  • Cherkauer, K. A. and Lettenmaier, D. P.: 1999, ‘Hydrologic effects of frozen soils in the upper Mississippi River basin’, J. Geophys. Res. 104(D16), 19,599–19,610.

    Google Scholar 

  • Daly, C., Neilson, R. P., and Phillips, D. L.: 1994, ‘A statistical-topographic model for mapping climatological precipitation over mountainous terrain’, J. Appl. Meteorol. 33, 140–158.

    Article  Google Scholar 

  • Daly, C., Taylor, G. H., and Gibson, W. P.: 1997, ‘The PRISM approach to mapping precipitation and temperature’, Reprints: 10th Conference on Applied Climatology, Reno, NV, American Meteorological Society, pp. 10–12.

  • Evans, J. and Schreider, S.: 2002, ‘Hydrological impacts of climate change on inflows to Perth, Australia’, Clim. Change 55(3), 361–393.

    Article  Google Scholar 

  • Gleick, P. H.: 1989, ‘Climate change, hydrology, and water resources’, Rev. Geophys. 27, 329–344.

    Google Scholar 

  • Golubev, V. S., Lawrimore, J. H., Groisman, P. Y., Speranskaya, N. A., Zhuravin, S. A., Menne, M.~J., Peterson, T. C., and Malone, R. W.: 2001, ‘Evaporation changes over the contiguous United States and the former USSR: A reassessment’, Geophys. Res. Lett. 28(13), 2665–2668.

    Article  Google Scholar 

  • Goolsby, D. A., Battaglin, W. A., and Hooper, R. P.: 1997, ‘Sources and transport of nitrogen in the Mississippi River Basin’, http://wwwrcolka.cr.usgs.gov/midconherb/st.louis.hypoxia.html (downloaded January 2003).

  • Evans, J. and Schreider, S.: 2002, ‘Hydrological impacts of climate change on inflows to Perth, Australia’, Clim. Change 55(3), 361–393.

    Article  Google Scholar 

  • Hansen, M. C., DeFries, R. S., Townshend, J. R. G., and Sohlberg, R.: 2000, ‘Global land cover classification at 1 km spatial resolution using a classification tree approach’, Int. J. Remote Sens. 21(6), 1331–1464.

    Article  Google Scholar 

  • Helsel, D. R. and Hirsch, R. M.: 1992, Statistical Methods in Water Resources, Elsevier, Amsterdam, 522 p.

    Google Scholar 

  • Hisdal, H., Stahl, K., Tallaksen, L. M., and Demuth, S.: 2001, ‘Have streamflow droughts in Europe become more severe or frequent?' Int. J. Climatol. 21, 317–333.

    Article  Google Scholar 

  • IPCC: 2001a, ‘Climate change 2001: Impacts, adaptation & vulnerability’, in McCarthy, J. J., Canziani, O. F., Leary, N. A., Dokken, D. J., and White, K. S. (eds.), Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, 1032 p.

  • IPCC: 2001b, ‘Climate change 2001: The scientific basis’, in Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A. (eds.), Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, UK, 881 p.

    Google Scholar 

  • Karl, T. R.: 1998, ‘Regional trends and variations of temperature and precipitation’, in Watson, R. T., et~al. (eds.), The Regional Impacts of Climate Change, as Assessment of Vulnerability, Cambridge University Press, pp. 411–425.

  • Karl, T. R. and Knight, R. W.: 1998, ‘Secular trends of precipitation amount, frequency, and intensity in the United States’, Bull. Am. Meteorol. Soc. 79(2), 231–241.

    Article  Google Scholar 

  • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., et~al.: 1996, ‘The NCEP/NCAR 40-year reanalysis project’, Bull. Am. Meteorol. Soc. 77, 437–471.

    Article  Google Scholar 

  • Kendall, M. G.: 1975, Rank Correlation Methods, Charles Griffin, London, 202 p.

    Google Scholar 

  • Lawrimore, J. H. and Peterson, T. C.: 2000, ‘Pan evaporation trends in dry and humid regions of the United States’, J. Hydrometeorol. 1, 543–546.

    Article  Google Scholar 

  • Lettenmaier, D. P.: 1975, ‘Detection of trends in water quality data from records with dependent observations’, Water Resour. Res. 12(5), 1037–1046.

    Google Scholar 

  • Lettenmaier, D. P., Wood, E. F., and Wallis, J. R.: 1994, ‘Hydro-climatological trends in the continental United States, 1948–88’, J. Clim. 7, 586–607.

    Article  Google Scholar 

  • Liang, X., Lettenmaier, D. P., and Wood, E. F.: 1996, ‘One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model’, J. Geophys. Res. 101, 21,403–21,422.

    Article  Google Scholar 

  • Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: 1994, ‘A simple hydrologically based model of land surface water and energy fluxes for general circulation models’, J. Geophys. Res. 99, 14,415–14,428.

    Google Scholar 

  • Lins, H. F. and Slack, J. R.: 1999, ‘Streamflow trends in the United States’, Geophys. Res. Lett. 26(2), 227–230.

    Article  Google Scholar 

  • Mann, H. B.: 1945, ‘Nonparametric test against trend’, Econometrica 13, 245–259.

    Google Scholar 

  • Maurer, E. P., O'Donnell, G. M., Lettenmaier, D. P., and Roads, J. O.: 2001, ‘Evaluation of the land surface water budget in NCEP/NCAR and NCEP/DOE reanalyses using an off-line hydrologic model’, J. Geophys. Res. 106(D16), 17,841–17,862.

    Google Scholar 

  • Maurer, E. P., Wood, A. W., Adam, J. C., Lettenmaier, D. P., and Nijssen, B.: 2002, ‘A long-term hydrologically-based data set of land surface fluxes and states for the conterminous United States’, J. Clim. 15(22), 3237–3251.

    Article  Google Scholar 

  • McCabe, G. J. Jr. and Wolock, D. M.: 1997, ‘Climate change and the detection of trends in annual runoff’, Clim. Res. 8, 129–134.

    Google Scholar 

  • Meade, R. H.: 1995, ‘Contaminants in the Mississippi River’, USGS Circular 1133, 140 p.

    Google Scholar 

  • Miller, D. A. and White, R. A.: 1998, ‘A conterminous United States multi-layer soil characteristics data set for regional climate and hydrology modeling’, Earth Interactions 2, 1–15.

    Article  Google Scholar 

  • Milly, P. C. D. and Dunne, K. A.: 2001, ‘Trends in evapotranspiration and surface cooling in the Mississippi River Basin’, Geophys. Res. Lett. 28(7), 1219–1222.

    Article  Google Scholar 

  • Mitosek, H. T.: 1995, ‘Climate variability and change within the discharge time series: A statistical approach’, Clim. Change 29, 101–116.

    Article  Google Scholar 

  • Morel, P.: 2001, ‘Why GEWEX? The agenda for a global energy and water cycle research program’, in Twitchell, P. (ed.), GEWEX NEWS 11(1), 1,7–11, International GEWEX Project Office, 1010 Wayne Avenue 450, Silver Spring, MA, USA.

  • Myneni, R. B., Nemani, R. R., and Running, S. W.: 1997, ‘Estimation of global leaf area index and absorbed PAR using radiative transfer models’, IEEE Trans. Geosci. Remote Sens. 35(6), 1380–1393.

    Article  Google Scholar 

  • Nijssen, B., Lettenmaier, D. P., Liang, X., Wetzel, S. W., and Wood, E. F.: 1997, ‘Streamflow simulation for continental-scale river basins’, Water Resour. Res. 33, 711–724.

    Article  Google Scholar 

  • Nijssen, B., O'Donnell, G. M., Hamlet, A. F., and Lettenmaier, D. P.: 2001, ‘Hydrologic sensitivity of global rivers to climate change’, Clim. Change 50(1–2), 143–175.

    Article  Google Scholar 

  • Olsen, J. R., Stedinger, J. R., Matalas, N. C., and Stakhiv, E. Z.: 1999, ‘Climate variability and flood frequency estimation for the Upper Mississippi and Lower Mississippi Rivers’, J. Am. Water Resour. Assoc. 35(6), 1509–1523.

    Google Scholar 

  • Peterson, T. C., Golubev, V. S., and Groisman, P. Y.: 1995, ‘Evaporation losing its strength’, Nature 377, 687–688.

    Article  Google Scholar 

  • Rawls, W. J., Ahuja, L. R., Brakensiek, D. L., and Shirmohammadi, A.: 1993, ‘Infiltration and soil water movement’, in Maidment, D. (ed.), Handbook of Hydrology, pp. 5.1–5.51.

  • Shepard, D. S.: 1984, ‘Computer mapping: The SYMAP interpolation algorithm’, in Gaile, G. L. and Willmott, C. J. (eds.), Spatial Statistics and Models, D. Reidel Publishing Co., pp. 133–145.

  • Solley, W. B., Pierce, R. R., and Perlman, H. A.: 1998, ‘Estimated use of water in the United States in 1995’, USGS Circular 1200.

  • Theil, H.: 1950, ‘A rank-invariant method of linear and polynomial regression analysis’, Indagationes Math. 12, 85–91.

    Google Scholar 

  • USACE: 2003, United States Army Corps of Engineers, download date: January, 2003, http://www. mvr.usace.army.mil/PublicAffairsOffice/HistoricArchives/.

  • USGS: 2003, United States Geological Survey, http://water.usgs.gov/nasqan/missfact/msfact.html, download date: January, 2003.

  • Washington, W. M., Weatherly, J. W., Meehl, G. A., Semtner, A. J., Jr., Bettge, T. W., Craig, A. P., Strand, W. G. Jr., Arblaster, J., Wayland, V. B., James, R., and Zhang, Y.: 2000, ‘Parallel climate model (PCM) control and transient simulations’, Clim. Dynam. 16(10/11), 755–774.

    Article  Google Scholar 

  • Widmann, M. and Bretherton, C. S.: 2000, ‘Validation of mesoscale precipitation in the NCEP reanalysis using a new grid-cell data set for the northwestern United States’, J. Clim. 13, 1936–1950.

    Article  Google Scholar 

  • Wigley, T. M. L. and Jones, P. D.: 1985, ‘Influences of precipitation changes and direct CO2 effects on streamflow’, Nature 314, 149–152.

    Article  Google Scholar 

  • Wood, A. W., Maurer, E. P., Kumar, A., and Lettenmaier, D. P.: 2002, ‘Long range experimental hydrologic forecasting for the eastern U.S’, J. Geophys. Res., 107(D20), 4429 (doi:10.1029/2001JD000659).

  • Wood, E. F., Lettenmaier, D. P., Liang, X., Nijssen, B., and Wetzel, S. W.: 1997, ‘Hydrological modeling of continental-scale basins’, Annu. Rev. Earth Planet. Sci. 25, 279–300.

    Article  Google Scholar 

  • Ziegler, A. D., Sheffield, J., Maurer, E. P., Nijssen, B., Wood, E. F., and Lettenmaier, D. P.: 2003, ‘Detection of intensification of continental-scale hydrological cycles: Temporal scale of evaluation’, J. Clim. 16(3), 535–547.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan D. Ziegler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziegler, A.D., Maurer, E.P., Sheffield, J. et al. Detection Time for Plausible Changes in Annual Precipitation, Evapotranspiration, and Streamflow in Three Mississippi River Sub-Basins. Climatic Change 72, 17–36 (2005). https://doi.org/10.1007/s10584-005-5379-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-005-5379-4

Keywords

Navigation