Skip to main content

Advertisement

Log in

Differential expression of FAK and Pyk2 in metastatic and non-metastatic EL4 lymphoma cell lines

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The murine EL4 lymphoma cell line exists in variants that are either sensitive or resistant to phorbol 12-myristate 13-acetate (PMA). In sensitive cells, PMA causes Erk MAPK activation and Erk-mediated growth arrest. In resistant cells, PMA induces a low level of Erk activation, without growth arrest. A relatively unexplored aspect of the phenotypes is that resistant cells are more adherent to culture substrate than are sensitive cells. In this study, the roles of the protein tyrosine kinases FAK and Pyk2 in EL4 phenotype were examined, with a particular emphasis on the role of these proteins in metastasis. FAK is expressed only in PMA-resistant (or intermediate phenotype) EL4 cells, correlating with enhanced cell–substrate adherence, while Pyk2 is more highly expressed in non-adherent PMA-sensitive cells. PMA treatment causes modulation of mRNA for FAK (up-regulation) and Pyk2 (down-regulation) in PMA-sensitive but not PMA-resistant EL4 cells. The increase in Pyk2 mRNA is correlated with an increase in Pyk2 protein expression. The roles of FAK in cell phenotype were further explored using transfection and knockdown experiments. The results showed that FAK does not play a major role in modulating PMA-induced Erk activation in EL4 cells. However, the knockdown studies demonstrated that FAK expression is required for proliferation and migration of PMA-resistant cells. In an experimental metastasis model using syngeneic mice, only FAK-expressing (PMA-resistant) EL4 cells form liver tumors. Taken together, these studies suggest that FAK expression promotes metastasis of EL4 lymphoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

EGF:

Epidermal growth factor

FAK:

Focal adhesion kinase

PMA:

Phorbol 12-myristate 13-acetate

References

  1. Kramer CM, Sando JJ (1986) Substrates for protein kinase C in cytosol of EL4 mouse thymoma cells. Cancer Res 46:3040–3045

    PubMed  CAS  Google Scholar 

  2. Meier KE, Licciardi KA, Haystead TAJ, Krebs EG (1991) Activation of messenger-independent protein kinases in wild-type and phorbol ester-resistant EL4 thymoma cells. J Biol Chem 256:1914–1920

    Google Scholar 

  3. Baier-Bitterlich G, Uberall F, Bauer B, Fresser F, Wachter H, Grunicke H, Utermann G, Altman A, Baier G (1996) Protein kinase C-theta isoenzyme selective stimulation of the transcription factor complex AP-1 in T lymphocytes. Mol Cell Biol 16:1842–1850

    PubMed  CAS  Google Scholar 

  4. Sansbury HM, Wisehart-Johnson AE, Qi C, Fulwood S, Meier KE (1997) Effects of protein kinase C activators on phorbol ester-sensitive and -resistant EL4 thymoma cells. Carcinogenesis 18:1817–1824

    Article  PubMed  CAS  Google Scholar 

  5. Richardson AF, Sando JJ (1995) Rapid tyrosine phosphorylation of an 85,000 M(r) protein after phorbol ester stimulation of EL4 thymoma cells. Cell Signal 7:17–30

    Article  PubMed  CAS  Google Scholar 

  6. Luo X, Sando JJ (1997) Deficient tyrosine phosphorylation of c-Cbl and associated proteins in phorbol ester-resistant EL4 mouse thymoma cells. J Biol Chem 272:12221–12228

    Article  PubMed  CAS  Google Scholar 

  7. Gause KC, Homma MK, Licciardi KA, Seger R, Ahn NG, Peterson MJ, Krebs EG, Meier KE (1993) Effects of phorbol ester on MAP kinase activator in wild-type and phorbol ester-resistant EL4 thymoma cells. J Biol Chem 268:16124–16129

    PubMed  CAS  Google Scholar 

  8. Bradshaw CD, Ella KM, Qi C, Sansbury HM, Wisehart-Johnson AE, Meier KE (1996) Effects of phorbol ester on phospholipase D and mitogen-activated protein kinase activities in T-lymphocyte cell lines. Immunol Lett 53:69–76

    Article  PubMed  CAS  Google Scholar 

  9. Resnick MS, Luo X, Vinton EG, Sando JJ (1997) Selective up-regulation of protein kinase C eta in phorbol ester-sensitive versus -resistant EL4 mouse thymoma cells. Cancer Res 57:2209–2215

    PubMed  CAS  Google Scholar 

  10. Farrar JJ, Fuller-Farrar J, Simon PL, Hilfiker ML, Stadler BM, Farrar WL (1980) Thymoma production of T cell growth factor (interleukin 2). J Immunol 125:2555–2558

    PubMed  CAS  Google Scholar 

  11. Sando JJ, Hilfiker ML, Piacentini MJ, Laufer TM (1982) Identification of phorbol ester receptors in T-cell growth factor-producing and -nonproducing EL4 mouse thymoma cells. Cancer Res 42:1676–1680

    PubMed  CAS  Google Scholar 

  12. Pearlstein KT, Staiano-Coico L, Miller RA, Pelus LM, Kirch ME, Stutman O, Palladino MA (1983) Multiple lymphokine production by a phorbol ester-stimulated mouse thymoma: relationship to cell cycle events. J Natl Cancer Inst 71:583–590

    PubMed  CAS  Google Scholar 

  13. Harrison JR, Lynch KR, Sando JJ (1987) Phorbol esters induce interleukin 2 mRNA in sensitive but not in resistant EL4 cells. J Biol Chem 262:234–238

    PubMed  CAS  Google Scholar 

  14. Rayter SI, Woodrow M, Lucas SC, Cantrell DA, Downward J (1992) p21ras mediates control of IL-2 gene promoter function in T cell activation. EMBO J 11:4549–4556

    PubMed  CAS  Google Scholar 

  15. Desrivieres S, Volarevic S, Mercep L, Ferrari S (1997) Evidence for different mechanisms of growth inhibition of T-cell lymphoma by phorbol esters and concanavalin A. J Biol Chem 272:2470–2476

    PubMed  CAS  Google Scholar 

  16. Ku H, Meier KE (2000) Phosphorylation of paxillin via the ERK mitogen-activated protein kinase cascade in EL4 thymoma cells. J Biol Chem 275:11333–11340

    Article  PubMed  CAS  Google Scholar 

  17. Han S, Knoepp SM, Hallman M, Meier KE (2007) RasGRP confers the phorbol ester-sensitive phenotype to EL4 lymphoma cells. Mol Pharm 71:314–322

    CAS  Google Scholar 

  18. Chahal MS, Brauner D, Meier KE (2010) Effects of phospholipase D2 on EGF receptor response in EL4 lymphoma cells. Pharmaceuticals 3:2045–2058

    Article  CAS  Google Scholar 

  19. Sansbury HM (1997) Phorbol ester responsiveness of sensitive and resistant EL4 thymoma cells. Dissertation, Medical University of South Carolina

  20. Kisielow P, van Boehmer H (1995) Development and selection of T cells: facts and puzzles. Adv Immunol 58:87–209

    Article  PubMed  CAS  Google Scholar 

  21. Fine JS, Kruisbeek AM (1991) The role of LFA-1/ICAM-1 interactions during murine T lymphocyte development. J Immunol 147:2852–2859

    PubMed  CAS  Google Scholar 

  22. Cary LA, Guan JL (1999) Focal adhesion kinase in integrin-mediated signaling. Front Biosci 4:D102–D113

    Article  PubMed  CAS  Google Scholar 

  23. Boudreau N, Sympson CJ, Web Z, Bissell MJ (1995) Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science 267:891–893

    Article  PubMed  CAS  Google Scholar 

  24. Wary KK, Mainiero F, Isakoff SJ, Marcantonio EE, Giancotti FG (1996) The adaptor protein Shc couples a class of integrins to the control of cell cycle progression. Cell 87:733–743

    Article  PubMed  CAS  Google Scholar 

  25. Cardone MH, Salveson GS, Widmann C, Johnson G, Frisch SM (1997) The regulation of anoikis: MEKK-1 activation requires cleavage by caspases. Cell 90:315–323

    Article  PubMed  CAS  Google Scholar 

  26. Schaller MD, Parsons JT (1994) Focal adhesion kinase and associated proteins. Curr Opin Cell Biol 6:705–710

    Article  PubMed  CAS  Google Scholar 

  27. Frisch SM, Vuori K, Ruoslahti E, Chan-Hui P-Y (1996) Control of adhesion-dependent cell survival by focal adhesion kinase. J Cell Biol 134:793–799

    Article  PubMed  CAS  Google Scholar 

  28. Schlaepfer DD, Hauck CR, Sieg DJ (1999) Signaling through focal adhesion kinase. Prog Biophys Mol Biol 7:435–478

    Article  Google Scholar 

  29. Sieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH, Schlaepfer DD (2000) FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol 2:249–256

    Article  PubMed  CAS  Google Scholar 

  30. Frisch SM, Ruoslahti E (1997) Integrins and anoikis. Curr Opin Cell Biol 9:701–706

    Article  PubMed  CAS  Google Scholar 

  31. Sonoda Y, Matsumoto Y, Funakoshi M, Yamamoto D, Hanks SD, Kasahara T (2000) Anti-apoptotic role of focal adhesion kinase (FAK). Induction of inhibitor-of-apoptosis proteins and apoptosis suppression by the overexpression of FAK in a human leukemic cell line, HL-60. J Biol Chem 275:116309–116315

    Article  Google Scholar 

  32. Aoudjit F, Vuori K (2000) Engagement of the alpha2beta1 integrin inhibits Fas ligand expression and activation-induced cell death in T cells in a focal adhesion kinase-dependent manner. Blood 95:2044–2051

    PubMed  CAS  Google Scholar 

  33. Siesser PMF, Hanks SK (2006) The signaling and biological implications of FAK overexpression in cancer. Clin Cancer Res 12:3233–3237

    Article  PubMed  CAS  Google Scholar 

  34. Shibue T, Weinberg RA (2009) Integrin β1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc Natl Acad Sci 105:10290–10295

    Article  Google Scholar 

  35. Pirone DM, Liu WF, Ruiz SA, Gao L, Raghavan S, Lemmon CA, Romer LH, Chen CS (2006) An inhibitory role for FAK in regulating proliferation: a link between limited adhesion and RhoA-ROCK signaling. J Cell Biol 174:277–288

    Article  PubMed  CAS  Google Scholar 

  36. Choi K, Kennedy M, Keller G (1993) Expression of a gene encoding a unique protein-tyrosine kinase within specific fetal- and adult-derived hematopoietic lineages. Proc Natl Acad Sci USA 90:5747–5751

    Article  PubMed  CAS  Google Scholar 

  37. Iwata S, Ohashi Y, Kamiguchi K, Morimoto C (2000) Beta 1-integrin-mediated cell signaling in T lymphocytes. J Dermatol Sci 23:75–86

    Article  PubMed  CAS  Google Scholar 

  38. Whitney GS, Chan PY, Blake J, Cosand WL, Neubauer MG, Aruffo A, Kanner SB (1993) Human T and B lymphocytes express a structurally conserved focal adhesion kinase, pp125FAK. DNA Cell Biol 2:823–830

    Article  Google Scholar 

  39. Recher C, Ysebaert L, Beyne-Rauzy O, Mansat-De Mas V, Ruidavets J-B, Cariven P, Demur C, Payrastre B, Laurent G, Racaud-Sultan C (2004) Expression of focal adhesion kinase in acute myeloid leukemia is associated with enhanced blast migration, increased cellularity, and poor prognosis. Cancer Res 64:3191–3197

    Article  PubMed  CAS  Google Scholar 

  40. Salgia R, Avraham S, Pisick E, Li JL, Raja S, Greenfield EA, Sattler M, Avrahan H, Griffin JD (1996) The related adhesion focal tyrosine kinase forms a complex with paxillin in hematopoietic cells. J Biol Chem 271:31222–31226

    Article  PubMed  CAS  Google Scholar 

  41. Mazaki Y, Uchida H, Hino O, Hashimoto S, Sabe H (1998) Paxillin isoforms in mouse. Lack of the gamma isoform and developmentally specific beta isoform expression. J Biol Chem 273:22435–22441

    Article  PubMed  CAS  Google Scholar 

  42. Berg NN, Ostergaard HL (1997) T cell receptor engagement induces tyrosine phosphorylation of FAK and Pyk2 and their association with Lck. J Immunol 159:1753–1757

    PubMed  CAS  Google Scholar 

  43. Ganju RK, Hatch WC, Avraham H, Ona MA, Druker B, Avraham S, Groopman JE (1997) RAFTK, a novel member of the focal adhesion kinase family, is phosphorylated and associates with signaling molecules upon activation of mature T lymphocytes. J Exp Med 185:1055–1063

    Article  PubMed  CAS  Google Scholar 

  44. Ostergaard H, Lysechko TL (2005) Focal adhesion kinase-related protein tyrosine kinase Pyk2 in T-cell activation and function. Immunol Res 31:267–282

    Article  PubMed  CAS  Google Scholar 

  45. Rodriguez-Fernandez JL, Gomez M, Luque A, Hogg N, Sanchez-Madrid F, Cabanas C (1999) The interaction of activated integrin lymphocyte function-associated antigen 1 with ligand intercellular adhesion molecule 1 induces activation and redistribution of focal adhesion kinase and proline-rich tyrosine kinase 2 in T lymphocytes. Mol Biol Cell 10:1891–1907

    PubMed  CAS  Google Scholar 

  46. van Seventer GA, Mullen MM, van Seventer JM (1998) Pyk2 is differentially regulated by beta1 integrin- and CD28-mediated co-stimulation in human CD4+ T lymphocytes. Eur J Immunol 28:3867–3877

    Article  PubMed  Google Scholar 

  47. Hatch WC, Ganju RK, Hiregowdara D, Avraham S, Groopman JE (1998) The related adhesion focal tyrosine kinase (RAFTK) is tyrosine phosphorylated and participates in colony-stimulating factor-1/macrophage colony-stimulating factor signaling in monocyte-macrophages. Blood 91:3967–3973

    PubMed  CAS  Google Scholar 

  48. Li X, Hunter D, Morris J, Haskill JS, Earp HS (1998) A calcium-dependent tyrosine kinase splice variant in human monocytes. Activation by a two-stage process involving adherence and a subsequent intracellular signal. J Biol Chem 273:9361–9364

    Article  PubMed  CAS  Google Scholar 

  49. Avraham H, Park SY, Schinkmann K, Avraham S (2000) RAFTK/Pyk2-mediated cellular signalling. Cell Signal 12:123–133

    Article  PubMed  CAS  Google Scholar 

  50. Benbernou N, Muegge K, Durum SK (2000) Interleukin (IL)-7 induces rapid activation of Pyk2, which is bound to Janus kinase 1 and IL-7Ralpha. J Biol Chem 275:7060–7065

    Article  PubMed  CAS  Google Scholar 

  51. McLeod SJ, Shum AJ, Lee RL, Takei F, Gold MR (2004) The Rap GTPases regulate integrin-mediated adhesion, cell spreading, actin polymerization and Pyk2 tyrosine phosphorylation in B lymphocytes. J Biol Chem 279:12009–12019

    Article  PubMed  CAS  Google Scholar 

  52. Seufferlein T, Rozengurt E (1995) Sphingosylphosphorylcholine rapidly induces tyrosine phosphorylation of p125FAK and paxillin, rearrangement of the actin cytoskeleton and focal contact assembly. J Biol Chem 270:24343–24351

    Article  PubMed  CAS  Google Scholar 

  53. Renshaw MW, Price LS, Schwartz MA (1999) Focal adhesion kinase mediates the integrin signaling requirement for growth factor activation of MAP kinase. J Cell Biol 147:611–618

    Article  PubMed  CAS  Google Scholar 

  54. De Nichilo MO, Katz BZ, O’Connell B, Yamada KM (1999) De novo expression of pp125 FAK in human macrophages regulates CSK distribution and MAP kinase activation but does not affect focal contact structure. J Cell Physiol 178:164–172

    Article  PubMed  Google Scholar 

  55. Litvak V, Tian D, Shaul YD, Lev S (2000) Targeting of PYK2 to focal adhesions as a cellular mechanism for convergence between integrins and G protein-coupled receptor signaling cascades. J Biol Chem 275:32736–32746

    Article  PubMed  CAS  Google Scholar 

  56. Andreev J, Galisteo ML, Kranenburg O, Logan SK, Ghiu ES, Okigaki M, Cary LA, Moolenaar WH, Schlessinger J (2001) Src and Pyk2 mediate G-protein-coupled receptor activation of epidermal growth factor receptor (EGFR) but are not required for coupling to the mitogen-activated protein (MAP) kinase signaling cascade. J Biol Chem 276:20130–20135

    Article  PubMed  CAS  Google Scholar 

  57. Small CL, Shima JE, Uzumcu M, Skinner MK, Griswold MD (2005) Profiling gene expression during the differentiation and development of the murine embryonic gonad. Biol Reprod 72:492–501

    Article  PubMed  CAS  Google Scholar 

  58. Zhang H, Zhang S, Cheung NK, Ragupathi G, Livingston PO (1998) Antibodies against GD2 ganglioside can eradicate syngeneic cancer micrometastases. Cancer Res 58:2844–2849

    PubMed  CAS  Google Scholar 

  59. Han S, Meier KE (2009) Integrated modulation of phorbol ester-induced Raf activation in EL4 lymphoma cells. Cell Signal 21:793–800

    Article  PubMed  CAS  Google Scholar 

  60. Zhu X, Assoian RK (1995) Integrin-dependent activation of MAP kinase: a link to shape-dependent cell proliferation. Mol Biol Cell 6:273–282

    PubMed  CAS  Google Scholar 

  61. Sieg DJ, Ilic D, Dones KC, Damsky CH, Hunter T, Schlaepfer DD (1998) Pyk2 and Src-family protein-tyrosine kinases compensate for the loss of FAK in fibronectin-stimulated signaling events but Pyk2 does not fully function to enhance FAK-cell migration. EMBO J 17:5933–5947

    Article  PubMed  CAS  Google Scholar 

  62. Ueki K, Mimura T, Nakamoto T, Sasaki T, Aizawa S, Hirai H, Yano S, Naruse T, Nojima Y (1998) Integrin-mediated signal transduction in cells lacking focal adhesion kinase. FEBS Lett 432:197–201

    Article  PubMed  CAS  Google Scholar 

  63. Knoepp SM, Chahal MS, Xie Y, Zhang Z, Brauner DJ, Hallman MA, Robinson SA, Han S, Imai M, Tomlinson S, Meier KE (2008) Effects of active and inactive phospholipase D2 on signal transduction, adhesion, migration, invasion, and metastasis in EL4 lymphoma cells. Mol Pharm 74:574–584

    Article  CAS  Google Scholar 

  64. Schaller MD (2010) Cellular functions of FAK kinases: insight into molecular mechanisms and novel functions. J Cell Sci 123:1007–1013

    Article  PubMed  CAS  Google Scholar 

  65. Bacon KB, Szabo MC, Yssel H, Bolen JB, Schall TJ (1996) RANTES induces tyrosine kinase activity of stably complexed p125FAK and ZAP-70 in human T cells. J Exp Med 184:873–882

    Article  PubMed  CAS  Google Scholar 

  66. Tsuchida M, Manthei ER, Alam T, Knechtle SJ, Hamawy MM (2000) Regulation of T cell receptor- and CD28-induced tyrosine phosphorylation of the focal adhesion tyrosine kinases Pyk2 and Fak by protein kinase C—a role for protein tyrosine phosphatases. J Biol Chem 275:1344–1350

    Article  PubMed  CAS  Google Scholar 

  67. Corsi FM, Rouer E, Girault JA, Enslen H (2006) Organization and post-transcriptional processing of focal adhesion kinase gene. MBC Genomics 7:198

    Google Scholar 

  68. Golubovskaya V, Kaur A, Cance W (2004) Cloning and characterization of the promoter region of human focal adhesion kinase gene: nuclear factor kappa B and p53 binding sites. Biochim Biophys Acta 1678:111–125

    PubMed  CAS  Google Scholar 

  69. Li S, Hua ZC (2008) FAK expression: regulation and therapeutic potential. Adv Cancer Res 101:45–61

    Article  PubMed  CAS  Google Scholar 

  70. Zheng C, Xing Z, Bian ZC, Guo C, Akbay A, Warner L, Guan J-L (1998) Differential regulation of Pyk2 and focal adhesion kinase (FAK). The C-terminal domain of FAK confers response to cell adhesion. J Biol Chem 273:2384–2389

    Article  PubMed  CAS  Google Scholar 

  71. Li X, Dy RC, Cance WG, Graves LM, Earp HS (1999) Interactions between two cytoskeleton-associated tyrosine kinases: calcium-dependent tyrosine kinase and focal adhesion tyrosine kinase. J Biol Chem 274:8917–8924

    Article  PubMed  CAS  Google Scholar 

  72. Le Boeuf F, Houle F, Sussman M, Huot J (2006) Phosphorylation of focal adhesion kinase (FAK) on Ser732 is induced by Rho-dependent kinase and is essential for proline-rich tyrosine kinase-1-mediated phosphorylation of FAK on Tyr407 in response to vascular endothelial growth factor. Mol Biol Cell 17:3508–3520

    Article  PubMed  CAS  Google Scholar 

  73. Roy S, Ruest PJ, Hanks SK (2002) FAK regulates tyrosine phosphorylation of CAS, paxillin, and PYK2 in cells expressing v-Src, but is not a critical determinant of v-Src transformation. J Cell Biochem 84:377–388

    Article  PubMed  Google Scholar 

  74. Du QS, Ren XR, Xie Y, Wang Q, Mei L, Xiong WC (2001) Inhibition of PYK2-induced actin cytoskeleton reorganization, PYK2 autophosphorylation and focal adhesion targeting by FAK. J Cell Sci 114:2977–2987

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (CA58640 and CA94144), National Science Foundation (EPS-9630167), U.S. Department of Defense (DAMD17-98-8524 and DAMD17-01-1-0730), the University Research Committee of the Medical University of South Carolina, and the Medical Scientist Training Program at the Medical University of South Carolina. We thank David Morris for supplying EL4 cells, Steven Hanks for supplying the FAK expression vector, David Cole for the Pyk2 expression vector, April Wisehart-Johnson for technical assistance, and Derek J. Pouchnik for assistance with the microarray analysis performed in the core facility supported by the Center for Biotechnology at WSU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn E. Meier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Knoepp, S.M., Ku, H. et al. Differential expression of FAK and Pyk2 in metastatic and non-metastatic EL4 lymphoma cell lines. Clin Exp Metastasis 28, 551–565 (2011). https://doi.org/10.1007/s10585-011-9391-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-011-9391-y

Keywords

Navigation