Skip to main content
Log in

MicroRNA-106a functions as an oncogene in human gastric cancer and contributes to proliferation and metastasis in vitro and in vivo

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Mounting evidences has shown that miRNAs are involved in the development and progression of gastric cancer acts as tumor suppressor genes or oncogenes. In our previous studies, we have found that the up-regulation of miR-106a occurs frequently in human gastric cancer tissues compared with that of normal tissues. Here, we investigate the role of the ectopic expressed miR-106a in the progression and metastasis of gastric cancer in vitro and in vivo. FFPE samples have the priority to be included and qRT-PCR was used to detect the miR-106a expression. Human gastric cancer cells and immortalized gastric epithelial cell were selected and the miR-106a mimic and inhibitor were transfected. Cell growth was determined by MTT method. The flow cytometric analysis for cell apoptosis and transwell assays for evaluating the cell migration and invasion were conducted. Luciferase assay and western blot confirmed the direct binding site of miR-106a and its target. BALB/c nude mice were randomly divided to explore the implantation of gastric cancer cells transfected with miR-106a antagomir. Abnormal over-expression of miR-106a significantly promoted gastric cancer cell proliferation, metastasis, inhibited the cell apoptosis. Functional experiment ascertained that miR-106a interacted with FAS and mediated caspase3 pathway. Knockdown of miR-106a leaded to the attenuation of gastric cancer implantation capacity in vivo. Moreover, expression of TIMP2 was inversely associated with miR-106a in nodule tissues. Apoptotic body was also seen under electron microscope accompanied by silencing of miR-106a. Together, this data indicated that miR-106a may act as an oncogene and contribute to gastric cancer development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012 (2014) http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx?cancer=all. Accessed 22 July 2014

  2. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108. doi:10.3322/caac.21262

    Article  PubMed  Google Scholar 

  3. Piazuelo MB, Correa P (2013) Gastric cancer: overview. Colomb Med 44(3):192–201

    PubMed  Google Scholar 

  4. Lujambio A, Lowe SW (2012) The microcosmos of cancer. Nature 482(7385):347–355. doi:10.1038/nature10888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schirle NT, Sheu-Gruttadauria J, MacRae IJ (2014) Structural basis for microRNA targeting. Science 346(6209):608–613. doi:10.1126/science.1258040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kloosterman WP, Plasterk RH (2006) The diverse functions of microRNAs in animal development and disease. Dev Cell 11(4):441–450. doi:10.1016/j.devcel.2006.09.009

    Article  CAS  PubMed  Google Scholar 

  7. Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23:175–205. doi:10.1146/annurev.cellbio.23.090506.123406

    Article  CAS  PubMed  Google Scholar 

  8. Landais S, Landry S, Legault P, Rassart E (2007) Oncogenic potential of the miR-106-363 cluster and its implication in human T-cell leukemia. Cancer Res 67(12):5699–5707. doi:10.1158/0008-5472.can-06-4478

    Article  CAS  PubMed  Google Scholar 

  9. Li P, Xu Q, Zhang D, Li X, Han L, Lei J, Duan W, Ma Q, Wu Z, Wang Z (2014) Upregulated miR-106a plays an oncogenic role in pancreatic cancer. FEBS Lett 588(5):705–712. doi:10.1016/j.febslet.2014.01.007

    Article  CAS  PubMed  Google Scholar 

  10. Wang Z, Wang B, Shi Y, Xu C, Xiao HL, Ma LN, Xu SL, Yang L, Wang QL, Dang WQ, Cui W, Yu SC, Ping YF, Cui YH, Kung HF, Qian C, Zhang X, Bian XW (2014) Oncogenic miR-20a and miR-106a enhance the invasiveness of human glioma stem cells by directly targeting TIMP-2. Oncogene. doi:10.1038/onc.2014.75

    Google Scholar 

  11. Hong L, Lai M, Chen M, Xie C, Liao R, Kang YJ, Xiao C, Hu WY, Han J, Sun P (2010) The miR-17-92 cluster of microRNAs confers tumorigenicity by inhibiting oncogene-induced senescence. Cancer Res 70(21):8547–8557. doi:10.1158/0008-5472.CAN-10-1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yue B, Sun B, Liu C, Zhao S, Zhang D, Yu F, Yan D (2015) Long non-coding RNA Fer-1-like protein 4 suppresses oncogenesis and exhibits prognostic value by associating with miR-106a-5p in colon cancer. Cancer Sci 106(10):1323–1332. doi:10.1111/cas.12759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu M, Zhang N, He S, Lui Y, Lu G, Zhao L (2014) MicroRNA-106a targets TIMP2 to regulate invasion and metastasis of gastric cancer. FEBS Lett 588(4):600–607. doi:10.1016/j.febslet.2013.12.028

    Article  CAS  PubMed  Google Scholar 

  14. Zhu M, Zhang N, He S (2014) Similarly up-regulated microRNA-106a in matched formalin-fixed paraffin-embedded and fresh frozen samples and the dynamic changes during gastric carcinogenesis and development. Pathol Res Pract 210(12):909–915. doi:10.1016/j.prp.2014.07.008

    Article  CAS  PubMed  Google Scholar 

  15. Wang Z, Liu M, Zhu H, Zhang W, He S, Hu C, Quan L, Bai J, Xu N (2013) miR-106a is frequently upregulated in gastric cancer and inhibits the extrinsic apoptotic pathway by targeting FAS. Mol Carcinog 52(8):634–646. doi:10.1002/mc.21899

    Article  CAS  PubMed  Google Scholar 

  16. Fox JG, Wang TC (2007) Inflammation, atrophy, and gastric cancer. J Clin Investig 117(1):60–69. doi:10.1172/JCI30111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Goubran HA, Kotb RR, Stakiw J, Emara ME, Burnouf T (2014) Regulation of tumor growth and metastasis: the role of tumor microenvironment. Cancer Growth Metastasis 7:9–18. doi:10.4137/CGM.S11285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cullen SP, Martin SJ (2015) Fas and TRAIL ‘death receptors’ as initiators of inflammation: implications for cancer. Semin Cell Dev Biol 39:26–34. doi:10.1016/j.semcdb.2015.01.012

    Article  CAS  PubMed  Google Scholar 

  19. Vilmont V, Filhol O, Hesse AM, Coute Y, Hue C, Remy-Tourneur L, Mistou S, Cochet C, Chiocchia G (2015) Modulatory role of the anti-apoptotic protein kinase CK2 in the sub-cellular localization of Fas associated death domain protein (FADD). Biochim Biophys Acta 1853(11 Pt A):2885–2896. doi:10.1016/j.bbamcr.2015.08.001

    Article  CAS  PubMed  Google Scholar 

  20. Walczak H, Krammer PH (2000) The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp Cell Res 256(1):58–66. doi:10.1006/excr.2000.4840

    Article  CAS  PubMed  Google Scholar 

  21. Lavrik IN (2014) Systems biology of death receptor networks: live and let die. Cell Death Dis 5:e1259. doi:10.1038/cddis.2014.160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu D, Shin HS, Lee YS, Lee YC (2014) miR-106b modulates cancer stem cell characteristics through TGF-beta/Smad signaling in CD44-positive gastric cancer cells. Lab Investig 94(12):1370–1381. doi:10.1038/labinvest.2014.125

    Article  CAS  PubMed  Google Scholar 

  23. Moon YW, Jeung HC, Rha SY, Yoo NC, Roh JK, Noh SH, Kim BS, Chung HC (2007) Changing patterns of prognosticators during 15-year follow-up of advanced gastric cancer after radical gastrectomy and adjuvant chemotherapy: a 15-year follow-up study at a single korean institute. Ann Surg Oncol 14(10):2730–2737. doi:10.1245/s10434-007-9479-4

    Article  PubMed  Google Scholar 

  24. Glockzin G, Piso P (2012) Current status and future directions in gastric cancer with peritoneal dissemination. Surg Oncol Clin N Am 21(4):625–633. doi:10.1016/j.soc.2012.07.002

    Article  PubMed  Google Scholar 

  25. Coccolini F, Gheza F, Lotti M, Virzi S, Iusco D, Ghermandi C, Melotti R, Baiocchi G, Giulini SM, Ansaloni L, Catena F (2013) Peritoneal carcinomatosis. World J Gastroenterol 19(41):6979–6994. doi:10.3748/wjg.v19.i41.6979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Goseki N, Takizawa T, Koike M (1992) Differences in the mode of the extension of gastric cancer classified by histological type: new histological classification of gastric carcinoma. Gut 33(5):606–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Roviello F, Marrelli D, de Manzoni G, Morgagni P, Di Leo A, Saragoni L, De Stefano A (2003) Prospective study of peritoneal recurrence after curative surgery for gastric cancer. Br J Surg 90(9):1113–1119. doi:10.1002/bjs.4164

    Article  CAS  PubMed  Google Scholar 

  28. Mei LJ, Yang XJ, Tang L, Hassan AH, Yonemura Y, Li Y (2010) Establishment and identification of a rabbit model of peritoneal carcinomatosis from gastric cancer. BMC Cancer 10:124. doi:10.1186/1471-2407-10-124

    Article  PubMed  PubMed Central  Google Scholar 

  29. Liotta LA, Stetler-Stevenson WG (1991) Tumor invasion and metastasis: an imbalance of positive and negative regulation. Cancer Res 51(18 Suppl):5054s–5059s

    CAS  PubMed  Google Scholar 

  30. Murphy G (2011) Tissue inhibitors of metalloproteinases. Genome Biol 12(11):233. doi:10.1186/gb-2011-12-11-233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Murphy G, Nagase H (2008) Progress in matrix metalloproteinase research. Mol Aspects Med 29(5):290–308. doi:10.1016/j.mam.2008.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1):52–67. doi:10.1016/j.cell.2010.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from Ningxia Natural Science Foundation of China (No. NZ1230).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuixiang He.

Ethics declarations

Conflict of interest

The authors declare that there is no financial interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Zhang, N., He, S. et al. MicroRNA-106a functions as an oncogene in human gastric cancer and contributes to proliferation and metastasis in vitro and in vivo. Clin Exp Metastasis 33, 509–519 (2016). https://doi.org/10.1007/s10585-016-9795-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-016-9795-9

Keywords

Navigation