Skip to main content

Advertisement

Log in

Prognostic role of 14q32.31 miRNA cluster in various carcinomas: a systematic review and meta-analysis

  • Review
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Deregulated miR-379/miR-656 cluster expression is considered as important for carcinogenesis and can be used as a potential prognostic marker. Hence, the meta-analysis was conducted to test the utility of miR-379/miR-656 cluster as a prognostic marker in various cancers. A literature search was performed using Web of Science, PubMed and Cochrane Library to obtain relevant studies and were subjected to various subgroup and bioinformatics analyses. Selected twenty-three studies contained 13 cancer types comprising of 3294 patients from 7 nations. Univariate and multivariate data showed an association of high expression of miRNAs with the poor prognosis of cancer patients (p < 0.001). The subgroup analysis showed that lung cancer, breast cancer and papillary renal cell carcinoma (p < 0.001) have a negative association with the survival of patients. Our study is the first meta-analysis showing the association of miR-379/miR-656 cluster expression and overall survival, suggesting its potential as a prognostic indicator in multiple cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BRCA:

Breast cancer

Chr:

Chromosome

Chr14MC:

MiR-379/miR-656 cluster

95% CI:

Confidence interval at 95%

CESC:

Cervical squamous cell carcinoma and endocervical adenocarcinoma

COAD:

Colon adenocarcinoma

CRCA:

Colorectal cancer

DFS:

Disease free survival

FDA:

Food and Drug Administration

FFPET:

Formalin-fixed paraffin-embedded tissue

HNSCC:

Head and neck squamous cell carcinoma

HR:

Hazard ratio

ICC:

Cervical cancer

ISH:

In situ hybridization

LIHC:

Liver hepatocellular carcinoma

LUAD:

Lung adenocarcinoma

MBL:

Medulloblastoma

miRNA:

MicroRNA

NBL:

Neuroblastoma

NSCLC:

Non-small cell lung cancer

OS:

Overall survival

OV:

Ovarian cancer

PAAD:

Pancreatic adenocarcinoma

PFS:

Progression free survival

pRCC:

Papillary renal cell carcinoma

PRISMA:

Preferred items for systematic reviews and meta-analyses

qRT-PCR:

Quantitative real-time polymerase chain reaction

RFS:

Regression free survival

STAD:

Stomach adenocarcinoma (gastric cancer)

TCGA:

The cancer genome atlas

TTD:

Therapeutic target database

EMT:

Epithelial to mesenchymal transition

DDR:

DNA damage response

PDGF-R:

Platelet-derived growth factor receptors

TGF:

Transforming growth factor

References

  1. Adams BD, Kasinski AL, Slack FJ (2014) Aberrant regulation and function of microRNAs in cancer. Curr Biol 24:R762–R776. https://doi.org/10.1016/j.cub.2014.06.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Varghese VK, Shukla V, Kabekkodu SP et al (2018) DNA methylation regulated microRNAs in human cervical cancer. Mol Carcinog 57:370–382. https://doi.org/10.1002/mc.22761

    Article  CAS  PubMed  Google Scholar 

  3. Shah MY, Ferrajoli A, Sood AK et al (2016) microRNA therapeutics in cancer: an emerging concept. EBioMedicine 12:34–42. https://doi.org/10.1016/j.ebiom.2016.09.017

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hayes J, Peruzzi PP, Lawler S (2014) MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med 20:460–469. https://doi.org/10.1016/j.molmed.2014.06.005

    Article  CAS  PubMed  Google Scholar 

  5. Griffiths-Jones S (2006) miRBase: the microRNA sequence database. Methods Mol Biol 342:129–138. https://doi.org/10.1385/1-59745-123-1:129

    Article  CAS  PubMed  Google Scholar 

  6. Kabekkodu SP, Shukla V, Varghese VK et al (2018) Clustered miRNAs and their role in biological functions and diseases. Biol Rev 93:1955–1986. https://doi.org/10.1111/brv.12428

    Article  PubMed  Google Scholar 

  7. Glazov EA, McWilliam S, Barris WC, Dalrymple BP (2008) Origin evolution, and biological role of miRNA cluster in DLK-DIO3 genomic region in placental mammals. Mol Biol Evol 25:939–948. https://doi.org/10.1093/molbev/msn045

    Article  CAS  PubMed  Google Scholar 

  8. Tsai K-W, Kao H-W, Chen H-C, et al (2009) Epigenetic control of the expression of a primate-specific microRNA cluster in human cancer cells. Epigenetics 587 Epigenetics 4:587–592. https://doi.org/10.4161/epi.4.8.10230

    Article  CAS  PubMed  Google Scholar 

  9. Edwards CA, Mungall AJ, Matthews L et al (2008) The evolution of the DLK1-DIO3 imprinted domain in mammals. PLoS Biol 6:1292–1305. https://doi.org/10.1371/journal.pbio.0060135

    Article  CAS  Google Scholar 

  10. González-Vallinas M, Rodríguez-Paredes M, Albrecht M et al (2018) Epigenetically regulated chromosome 14q32 miRNA cluster induces metastasis and predicts poor prognosis in lung adenocarcinoma patients. Mol Cancer Res 16:390–402. https://doi.org/10.1158/1541-7786.MCR-17-0334

    Article  CAS  PubMed  Google Scholar 

  11. Shahar T, Granit A, Zrihan D et al (2016) Expression level of miRNAs on chromosome 14q32.31 region correlates with tumor aggressiveness and survival of glioblastoma patients. J Neurooncol 130:413–422. https://doi.org/10.1007/s11060-016-2248-0

    Article  CAS  PubMed  Google Scholar 

  12. Kumar A, Nayak S, Pathak P et al (2018) Identification of miR-379/miR-656 (C14MC) cluster downregulation and associated epigenetic and transcription regulatory mechanism in oligodendrogliomas. J Neurooncol 139:23–31. https://doi.org/10.1007/s11060-018-2840-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151:264. https://doi.org/10.7326/0003-4819-151-4-200908180-00135

    Article  PubMed  Google Scholar 

  14. Review Manager (RevMan) (2014) Version 5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration

  15. Suurmond R, van Rhee H, Hak T (2017) Introduction, comparison, and validation of meta-essentials: a free and simple tool for meta-analysis. Res Synth Methods 8:537–553. https://doi.org/10.1002/jrsm.1260

    Article  PubMed  PubMed Central  Google Scholar 

  16. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188. https://doi.org/10.1016/0197-2456(86)90046-2

    Article  CAS  PubMed  Google Scholar 

  17. Lewis S, Clarke M (2001) Forest plots: trying to see the wood and the trees. BMJ 322:1479–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50:1088. https://doi.org/10.2307/2533446

    Article  CAS  PubMed  Google Scholar 

  19. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634. https://doi.org/10.1136/BMJ.315.7109.629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aguirre-Gamboa R, Trevino V (2014) SurvMicro: assessment of miRNA-based prognostic signatures for cancer clinical outcomes by multivariate survival analysis. Bioinformatics 30:1630–1632. https://doi.org/10.1093/bioinformatics/btu087

    Article  CAS  PubMed  Google Scholar 

  21. Goswami CP, Nakshatri H (2012) PROGmiR: a tool for identifying prognostic miRNA biomarkers in multiple cancers using publicly available data. J Clin Bioinform 2:23. https://doi.org/10.1186/2043-9113-2-23

    Article  CAS  Google Scholar 

  22. Chou CH, Shrestha S, Yang CD et al (2018) MiRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res 46:D296–D302. https://doi.org/10.1093/nar/gkx1067

    Article  CAS  PubMed  Google Scholar 

  23. Wang J, Duncan D, Shi Z, Zhang B (2013) WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res 41:W77–W83. https://doi.org/10.1093/nar/gkt439

    Article  PubMed  PubMed Central  Google Scholar 

  24. Anaya J (2016) OncoLnc: linking TCGA survival data to mRNAs miRNAs and lncRNAs. PeerJ Comput Sci 2:e67. https://doi.org/10.7717/peerj-cs.67

    Article  Google Scholar 

  25. Fiannaca A, La Rosa M, La Paglia L, Urso A (2018) miRTissue: a web application for the analysis of miRNA-target interactions in human tissues. BMC Bioinform 19:434. https://doi.org/10.1186/s12859-018-2418-5

    Article  CAS  Google Scholar 

  26. Krzywinski M, Schein J, Birol I et al (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645. https://doi.org/10.1101/gr.092759.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ritchie W, Flamant S, Rasko JEJ (2010) mimiRNA: a microRNA expression profiler and classification resource designed to identify functional correlations between microRNAs and their targets. Bioinformatics 26:223–227. https://doi.org/10.1093/bioinformatics/btp649

    Article  CAS  PubMed  Google Scholar 

  28. Yang Z, Ren F, Liu C et al (2010) dbDEMC: a database of differentially expressed miRNAs in human cancers. BMC Genom 11(Suppl 4):S5. https://doi.org/10.1186/1471-2164-11-S4-S5

    Article  CAS  Google Scholar 

  29. Panwar B, Omenn GS, Guan Y (2017) miRmine: a database of human miRNA expression profiles. Bioinformatics 33:1554–1560. https://doi.org/10.1093/bioinformatics/btx019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang H, Wang Z, Ma R et al (2018) MicroRNAs as biomarkers for the progression and prognosis of colon carcinoma. Int J Mol Med 42:2080–2088

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ji W, Sun B, Su C (2017) Targeting microRNAs in cancer gene therapy. Genes (Basel). https://doi.org/10.3390/genes8010021

    Article  PubMed Central  Google Scholar 

  32. Chen Y, Gao D-Y, Huang L (2015) In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv Drug Deliv Rev 81:128–141. https://doi.org/10.1016/J.ADDR.2014.05.009

    Article  CAS  PubMed  Google Scholar 

  33. Di Martino MT, Rossi M, Caracciolo D et al (2016) Mir-221/222 are promising targets for innovative anticancer therapy. Expert Opin Ther Targets 20:1099–1108. https://doi.org/10.1517/14728222.2016.1164693

    Article  CAS  PubMed  Google Scholar 

  34. Saito T, Hara S, Kato T et al (2018) A tandem repeat array in IG-DMR is essential for imprinting of paternal allele at the Dlk1-Dio3 domain during embryonic development. Hum Mol Genet 27:3283–3292. https://doi.org/10.1093/hmg/ddy235

    Article  CAS  PubMed  Google Scholar 

  35. Rago L, Beattie R, Taylor V, Winter J (2014) MiR379-410 cluster miRNAs regulate neurogenesis and neuronal migration by fine-tuning N-cadherin. EMBO J 33:906–920. https://doi.org/10.1002/embj.201386591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Welten SMJ, Bastiaansen AJNM, De Jong RCM et al (2014) Inhibition of 14q32 MicroRNAs miR-329, miR-487b, miR-494, and miR-495 increases neovascularization and blood flow recovery after ischemia. Circ Res 115:696–708. https://doi.org/10.1161/CIRCRESAHA.114.304747

    Article  CAS  PubMed  Google Scholar 

  37. Labialle S, Marty V, Bortolin-Cavaille M-L et al (2014) cluster at the imprinted Dlk1-Dio3 domain controls neonatal metabolic adaptation. EMBO J 33:2216–2230. https://doi.org/10.15252/embj.201387038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Laddha SV, Nayak S, Paul D et al (2013) Genome-wide analysis reveals downregulation of miR-379/miR-656 cluster in human cancers. Biol Direct 8:10. https://doi.org/10.1186/1745-6150-8-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nayak S, Aich M, Kumar A et al (2018) Novel internal regulators and candidate miRNAs within miR-379/miR-656 miRNA cluster can alter cellular phenotype of human glioblastoma. Sci Rep 8:7673. https://doi.org/10.1038/s41598-018-26000-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Olaru AV, Ghiaur G, Yamanaka S et al (2011) MicroRNA down-regulated in human cholangiocarcinoma control cell cycle through multiple targets involved in the G1/S checkpoint. Hepatology 54:2089–2098. https://doi.org/10.1002/hep.24591

    Article  CAS  PubMed  Google Scholar 

  41. Guo M, Jiang Z, Zhang X et al (2014) miR-656 inhibits glioma tumorigenesis through repression of BMPR1A. Carcinogenesis 35:1698–1706. https://doi.org/10.1093/carcin/bgu030

    Article  CAS  PubMed  Google Scholar 

  42. Liao G, Chen F, Zhong J, Jiang X (2018) MicroRNA-539 inhibits the proliferation and invasion of bladder cancer cells by regulating IGF-1R. Mol Med Rep 17:4917–4924. https://doi.org/10.3892/mmr.2018.8497

    Article  CAS  PubMed  Google Scholar 

  43. Zhang YF, Yu Y, Song WZ et al (2016) miR-410-3p suppresses breast cancer progression by targeting Snail. Oncol Rep 36:480–486. https://doi.org/10.3892/or.2016.4828

    Article  CAS  PubMed  Google Scholar 

  44. Su X, Zhang L, Li H et al (2017) MicroRNA-134 targets KRAS to suppress breast cancer cell proliferation, migration and invasion. Oncol Lett 13:1932–1938. https://doi.org/10.3892/ol.2017.5644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gururajan M, Josson S, Chu GCY et al (2014) MiR-154* and miR-379 in the DLK1-DIO3 MicroRNA mega-cluster regulate epithelial to mesenchymal transition and bone metastasis of prostate cancer. Clin Cancer Res 20:6559–6569. https://doi.org/10.1158/1078-0432.CCR-14-1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gotzmann J, Fischer ANM, Zojer M et al (2006) A crucial function of PDGF in TGF-β-mediated cancer progression of hepatocytes. Oncogene 25:3170–3185. https://doi.org/10.1038/sj.onc.1209083

    Article  CAS  PubMed  Google Scholar 

  47. Mittal V (2016) In: Ahmad A, Gadgeel SM (eds) Epithelial mesenchymal transition in aggressive lung cancers. Springer International Publishing, Cham, pp 37–56

    Google Scholar 

  48. Hamilton G, Rath B (2017) Mesenchymal-epithelial transition and circulating tumor cells in small cell lung cancer. Advances in experimental medicine and biology. Springer, Cham, pp 229–245

    Google Scholar 

  49. Chai J, Dong W, Xie C et al (2015) MicroRNA-494 sensitizes colon cancer cells to fluorouracil through regulation of DPYD. IUBMB Life 67:191–201. https://doi.org/10.1002/iub.1361

    Article  CAS  PubMed  Google Scholar 

  50. Zhao H, Diao C, Wang X et al (2018) MiR-543 promotes migration, invasion and epithelial-mesenchymal transition of esophageal cancer cells by targeting phospholipase A2 group IVA. Cell Physiol Biochem 48:1595–1604. https://doi.org/10.1159/000492281

    Article  CAS  PubMed  Google Scholar 

  51. Peng Y, He X, Chen H et al (2018) Inhibition of microRNA-299-5p sensitizes glioblastoma cells to temozolomide via the MAPK/ERK signaling pathway. Biosci Rep 38:BSR20181051. https://doi.org/10.1042/BSR20181051

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lou C, Xiao M, Cheng S et al (2016) MiR-485-3p and miR-485-5p suppress breast cancer cell metastasis by inhibiting PGC-1α expression. Cell Death Dis 7:e2159. https://doi.org/10.1038/cddis.2016.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wu H, Li J, Guo E et al (2018) MiR-410 acts as a tumor suppressor in estrogen receptor-positive breast cancer cells by directly targeting ERLIN2 via the ERS pathway. Cell Physiol Biochem 48:461–474. https://doi.org/10.1159/000491777

    Article  CAS  PubMed  Google Scholar 

  54. Wang Q, Lv L, Li Y, Ji H (2018) MicroRNA-655 suppresses cell proliferation and invasion in oral squamous cell carcinoma by directly targeting metadherin and regulating the PTEN/AKT pathway. Mol Med Rep 18:3106–3114. https://doi.org/10.3892/mmr.2018.9292

    Article  CAS  PubMed  Google Scholar 

  55. Zhao J, Xu J, Zhang R (2018) MicroRNA-539 inhibits colorectal cancer progression by directly targeting SOX4. Oncol Lett 16:2693–2700. https://doi.org/10.3892/ol.2018.8892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lin H, Huang ZP, Liu J et al (2018) MiR-494-3p promotes PI3K/AKT pathway hyperactivation and human hepatocellular carcinoma progression by targeting PTEN. Sci Rep 8:10461. https://doi.org/10.1038/s41598-018-28519-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li L, Zhang H (2017) MicroRNA-379 inhibits cell proliferation and invasion in glioma via targeting metadherin and regulating PTEN/AKT pathway. Mol Med Rep 17:4049–4056. https://doi.org/10.3892/mmr.2017.8361

    Article  CAS  PubMed  Google Scholar 

  58. Zhao Z, Qin L, Li S (2016) miR-411 contributes the cell proliferation of lung cancer by targeting FOXO1. Tumor Biol 37:5551–5560. https://doi.org/10.1007/s13277-015-4425-8

    Article  CAS  Google Scholar 

  59. Li J, Xu X, Meng S et al (2017) MET/SMAD3/SNAIL circuit mediated by miR-323a-3p is involved in regulating epithelial-mesenchymal transition progression in bladder cancer. Cell Death Dis 8:e3010. https://doi.org/10.1038/cddis.2017.331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu J, Jiang J, Hui X et al (2018) Mir-758-5p suppresses glioblastoma proliferation, migration and invasion by targeting ZBTB20. Cell Physiol Biochem 48:2074–2083. https://doi.org/10.1159/000492545

    Article  CAS  PubMed  Google Scholar 

  61. Jiang W, Liu J, Xu T, Yu X (2016) MiR-329 suppresses osteosarcoma development by downregulating Rab10. FEBS Lett 590:2973–2981. https://doi.org/10.1002/1873-3468.12337

    Article  CAS  PubMed  Google Scholar 

  62. Shen L, Du X, Ma H, Mei S (2017) miR-1193 suppresses the proliferation and invasion of human T-cell leukemia cells through directly targeting the transmembrane 9 superfamily 3 (TM9SF3). Oncol Res 25:1643–1651. https://doi.org/10.3727/096504017X14908284471361

    Article  PubMed  PubMed Central  Google Scholar 

  63. Jiang X, Huang H, Li Z et al (2012) MiR-495 is a tumor-suppressor microRNA down-regulated in MLL-rearranged leukemia. Proc Natl Acad Sci USA 109:19397–19402. https://doi.org/10.1073/pnas.1217519109

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lu M, Wang C, Chen W et al (2018) miR-654-5p targets GRAP to promote proliferation, metastasis, and chemoresistance of oral squamous cell carcinoma through Ras/MAPK signaling. DNA Cell Biol 37:381–388. https://doi.org/10.1089/dna.2017.4095

    Article  CAS  PubMed  Google Scholar 

  65. An N, Luo X, Zhang M, Yu R (2017) MicroRNA-376b promotes breast cancer metastasis by targeting Hoxd10 directly. Exp Ther Med 13:79–84. https://doi.org/10.3892/etm.2016.3942

    Article  CAS  PubMed  Google Scholar 

  66. Xue Z, Zhao J, Niu L et al (2015) Up-regulation of MiR-300 promotes proliferation and invasion of osteosarcoma by targeting BRD7. PLoS ONE 10:e0127682. https://doi.org/10.1371/journal.pone.0127682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xu Y, He J, Wang Y et al (2015) miR-889 promotes proliferation of esophageal squamous cell carcinomas through DAB2IP. FEBS Lett 589:1127–1135. https://doi.org/10.1016/j.febslet.2015.03.027

    Article  CAS  PubMed  Google Scholar 

  68. Yao H, Xia D, Li Z-L et al (2018) MiR-382 functions as tumor suppressor and chemosensitizer in colorectal cancer. Biosci Rep. https://doi.org/10.1042/BSR20180441

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lin X, Yang Z, Zhang P et al (2016) miR-154 inhibits migration and invasion of human non-small cell lung cancer by targeting ZEB2. Oncol Lett 12:301–306. https://doi.org/10.3892/ol.2016.4577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Alvarado S, Wyglinski J, Suderman M et al (2013) Methylated DNA binding domain protein 2 (MBD2) coordinately silences gene expression through activation of the microRNA hsa-mir-496 promoter in breast cancer cell line. PLoS ONE 8:e74009. https://doi.org/10.1371/journal.pone.0074009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu W-Y, Yang Z, Sun Q et al (2018) miR-377-3p drives malignancy characteristics via upregulating GSK-3β expression and activating NF-κB pathway in hCRC cells. J Cell Biochem 119:2124–2134. https://doi.org/10.1002/jcb.26374

    Article  CAS  PubMed  Google Scholar 

  72. Lu Y-J, Liu R-Y, Hu K, Wang Y (2016) MiR-541-3p reverses cancer progression by directly targeting TGIF2 in non-small cell lung cancer. Tumour Biol 37:12685–12695. https://doi.org/10.1007/s13277-016-5241-5

    Article  CAS  PubMed  Google Scholar 

  73. Yu H, Xing H, Han W et al (2017) MicroRNA-409-5p is upregulated in breast cancer and its downregulation inhibits cancer development through downstream target of RSU1. Tumour Biol 39:1010428317701647. https://doi.org/10.1177/1010428317701647

    Article  CAS  PubMed  Google Scholar 

  74. Li P, Dong M, Wang Z (2018) Downregulation of TSPAN13 by miR-369-3p inhibits cell proliferation in papillary thyroid cancer (PTC). Bosn J basic Med Sci. https://doi.org/10.17305/bjbms.2018.2865

    Article  PubMed  PubMed Central  Google Scholar 

  75. Xia B, Li H, Yang S et al (2016) MiR-381 inhibits epithelial ovarian cancer malignancy via YY1 suppression. Tumor Biol 37:9157–9167. https://doi.org/10.1007/s13277-016-4805-8

    Article  CAS  Google Scholar 

  76. Yanaka Y, Muramatsu T, Uetake H et al (2015) miR-544a induces epithelial-mesenchymal transition through the activation of WNT signaling pathway in gastric cancer. Carcinogenesis 36:1363–1371. https://doi.org/10.1093/carcin/bgv106

    Article  CAS  PubMed  Google Scholar 

  77. Ma M, He M, Jiang Q et al (2016) MiR-487a promotes TGF-β1-induced EMT, the migration and invasion of breast cancer cells by directly targeting MAGI2. Int J Biol Sci 12:397–408. https://doi.org/10.7150/ijbs.13475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li J, Wang Y, Luo J et al (2012) miR-134 inhibits epithelial to mesenchymal transition by targeting FOXM1 in non-small cell lung cancer cells. FEBS Lett 586:3761–3765. https://doi.org/10.1016/j.febslet.2012.09.016

    Article  CAS  PubMed  Google Scholar 

  79. Lian H-W, Zhou Y, Jian Z-H, Liu R-Z (2015) MiR-323-5p acts as a tumor suppressor by targeting the insulin-like growth factor 1 receptor in human glioma cells. Asian Pac J Cancer Prev 15:10181–10185. https://doi.org/10.7314/APJCP.2014.15.23.10181

    Article  Google Scholar 

  80. Swarbrick A, Woods SL, Shaw A et al (2010) miR-380-5p represses p53 to control cellular survival and is associated with poor outcome in MYCN-amplified neuroblastoma. Nat Med 16:1134–1140. https://doi.org/10.1038/nm.2227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dini P, Daels P, Loux SC et al (2018) Kinetics of the chromosome 14 microRNA cluster ortholog and its potential role during placental development in the pregnant mare. BMC Genom 19:954. https://doi.org/10.1186/s12864-018-5341-2

    Article  CAS  Google Scholar 

  82. Zhang L, Volinia S, Bonome T et al (2008) Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proc Natl Acad Sci USA 105:7004–7009. https://doi.org/10.1073/pnas.0801615105

    Article  PubMed  PubMed Central  Google Scholar 

  83. Zehavi L, Avraham R, Barzilai A et al (2012) Silencing of a large microRNA cluster on human chromosome 14q32 in melanoma: biological effects of mir-376a and mir-376c on insulin growth factor 1 receptor. Mol Cancer 11:44. https://doi.org/10.1186/1476-4598-11-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shiah S-G, Hsiao J-R, Chang W-M et al (2014) Downregulated miR329 and miR410 promote the proliferation and invasion of oral squamous cell carcinoma by targeting Wnt-7b. Cancer Res 74:7560–7572. https://doi.org/10.1158/0008-5472.CAN-14-0978

    Article  CAS  PubMed  Google Scholar 

  85. O’Brien KP, Khan S, Gilligan KE et al (2018) Employing mesenchymal stem cells to support tumor-targeted delivery of extracellular vesicle (EV)-encapsulated microRNA-379. Oncogene 37:2137–2149. https://doi.org/10.1038/s41388-017-0116-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India (Grant No: EMR/2016/002314) and Department of Biotechnology (DBT), Government of India (BT/PR2423/AGR/36/700/2011) for financial support and Manipal Academy of Higher Education (MAHE) and Manipal School of Life Sciences for infrastructure support.

Funding

This study was funded by Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India (Grant No: EMR/2016/002314) and Department of Biotechnology (DBT), Government of India (BT/PR2423/AGR/36/700/2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shama Prasada Kabekkodu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 33 kb)

Supplementary material 2 (DOCX 21 kb)

Supplementary material 3 (DOCX 20 kb)

Supplementary material 4 (DOCX 20 kb)

Supplementary material 5 (DOCX 42 kb)

Supplementary material 6 (XLSX 33 kb)

Supplementary material 7 (DOCX 30 kb)

Supplementary material 8 (XLSX 164 kb)

Supplementary Fig. 1

Kaplan-Meier analysis on combined effect of Chr14MC expression in different cancers. a) Bladder cancer (BLCA) b) Breast cancer(BRCA) c) Kidney renal papillary cell carcinoma (KIRP) d) Pancreatic adenocarcinoma (PAAD) e) Lung squamous cell carcinoma (LUSC) f) Lung adenocarcinoma (LUAD) g) Colon adenocarcinoma (COAD) h) Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) i) Stomach adenocarcinoma (STAD) j) Head and Neck squamous cell carcinoma (HNSC). Supplementary material 9 (TIFF 3756 kb)

Supplementary Fig. 2

Kaplan-Meier analysis on combined effect of Chr14MC expression in different cancers. a) Bladder cancer b) Breast cancer c) Kidney renal papillary cell carcinoma d) Pancreatic adenocarcinoma e) Lung squamous cell carcinoma f) Liver hepatocellular carcinoma g) Lung adenocarcinoma h) Colon adenocarcinoma i) Cervical squamous cell carcinoma and endocervical adenocarcinoma j) Stomach adenocarcinoma k) Ovarian serous cystadenocarcinoma l) Head and Neck squamous cell carcinoma. Supplementary material 10 (TIFF 4976 kb)

Supplementary Fig. 3

Kaplan-Meier analysis on combined effect of Chr14MC expression in subtype of cancer a) Breast cancer PR Negative(HR=2.69, 95%CI=1.04-6.99, p=0.041), b) Breast cancer PR positive (HR=4.34, 95%CI=1.91-9.87, p=0.0004) , c) Breast cancer ER Negative(HR=2.04, 95%CI=0.72-5.8, p=0.198), d) Breast cancer ER Positive(HR=4.54, 95%CI=2.06-9.98, p=0.00016), e) Lung cancer stage IA(HR=3.717e+09, 95%CI=0-inf, p=0.99), f) Lung cancer stage IB(HR=4.47, 95%CI=1.54-12.94, p=0.005), g) Lung cancer stage IIA(HR=3.03, 95%CI=0.42-21.87, p=0.27), h) Lung cancer stage IIB(HR=8.57, 95%CI=1.93-38.09, p=0.0047), i) Lung cancer stage IIIA(HR=4.68, 95%CI=0.53-41.47, p=0.16). Supplementary material 11 (TIFF 6626 kb)

Supplementary material 12 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jishnu, P.V., Jayaram, P., Shukla, V. et al. Prognostic role of 14q32.31 miRNA cluster in various carcinomas: a systematic review and meta-analysis. Clin Exp Metastasis 37, 31–46 (2020). https://doi.org/10.1007/s10585-019-10013-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-019-10013-2

Keywords

Navigation