Skip to main content
Log in

Design and development of high performance MOS current mode logic (MCML) processor for fast and power efficient computing

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Power dissipation and delay product have emerged to be crucial issue, which prove to decrease the performance of microprocessor. The MOS current mode logic (MCML) is an evolving logic family that is attracting interest owing to its high speed operation, reliable performance in comparison to the CMOS logic family. However, the MCML suffers from constant static power dissipation, which, if left unmanaged, would result in an inordinate energy requirement in large scale ICs. In order to resolve this challenge, the newly introduced system designed a modified MOS current mode logic (modified MCML) that has remarkable characteristics of lesser power dissipation, better switching frequency and greater processing speed. With the aim of achieving low power dissipation, the dynamic MOS current mode logic (dynamic MCML) is proposed. Dynamic MCML circuits integrate the benefits of MCML circuits with those that of the dynamic logic families for achieving great performance using a low-supply voltage along with low-power dissipation. The results obtained from simulation show that the newly introduced design model of dynamic MCML yields greater power conservation and higher processing speed in comparison with conventional CMOS technology, MCML and modified MCML with regard to power dissipation and power delay product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jeon, H., Kim, Y.B., Choi, M.: Standby leakage power reduction technique for nanoscale CMOS VLSI systems. IEEE Trans. Instrum. Meas. 59(5), 1127–1133 (2010)

    Article  Google Scholar 

  2. Abdulkarim, O. M., Shams, M.: A symmetric MOS current-mode logic universal gate for high speed applications. In: Proceedings of the 17th ACM Great Lakes symposium on VLSI, pp. 212–215. ACM (2007)

  3. Salman, E., Friedman, E.: High Performance Integrated Circuit Design. McGraw Hill Professional, New York (2012)

    Google Scholar 

  4. Seabaugh, A.C., Zhang, Q.: Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98(12), 2095–2110 (2010)

    Article  Google Scholar 

  5. Savidis, I., Kose, S., Friedman, E.G.: Power noise in TSV-based 3-D integrated circuits. IEEE J. Solid-State Circuits 48(2), 587–597 (2013)

    Article  Google Scholar 

  6. Gupta, K., Pandey, N., Gupta, M.: Analysis and design of MOS current mode logic exclusive-OR gate using triple-tail cells. Microelectron. J. 44(6), 561–567 (2013)

    Article  Google Scholar 

  7. Hassan, H., Anis, M., Elmasry, M.: MOS current mode circuits: analysis, design, and variability. IEEE Trans. VLSI Syst. 13(8), 885–898 (2005)

    Article  Google Scholar 

  8. Cevrero, A., Regazzoni, F., Schwander, M., Badel, S., Ienne, P., Leblebici, Y.: Power-gated mos current mode logic (pg-mcml): a power aware dpa-resistant standard cell library. In: Design Automation Conference (DAC), 2011 48th ACM/EDAC/IEEE, pp. 1014–1019. IEEE (2011)

  9. Nonis, R., Palumbo, E., Palestri, P., Selmi, L.: A design methodology for MOS current-mode logic frequency dividers. IEEE Trans. Circuits Syst. I 54(2), 245–254 (2007)

    Article  Google Scholar 

  10. Wu, Y., Hu, J.: Low-voltage MOS current mode logic for low-power and high speed applications. Inf. Technol. J. 10(12), 2470–2475 (2011)

    Article  MathSciNet  Google Scholar 

  11. Nonis, R., Palumbo, E., Palestri, P., Selmi, L.: A design methodology for MOS current-mode logic frequency dividers. IEEE Trans. Circuits Syst. I 54(2), 245–254 (2007)

    Article  Google Scholar 

  12. Cannillo, F., Toumazou, C., Lande, T.S.: Nanopower subthreshold MCML in submicrometer CMOS technology. IEEE Trans. Circuits Syst. I 56(8), 1598–1611 (2009)

    Article  MathSciNet  Google Scholar 

  13. Alioto, M., Palumbo, G.: Feature–power-aware design techniques for nanometer MOS current-mode logic gates: a design framework. IEEE Circuits Syst. Mag. 6(4), 42–61 (2006)

    Article  Google Scholar 

  14. Hassoune, I., Macé, F., Flandre, D., Legat, J.D.: Low-swing current mode logic (LSCML): a new logic style for secure and robust smart cards against power analysis attacks. Microelectron. J. 37(9), 997–1006 (2006)

    Article  Google Scholar 

  15. Hu, J., Ni, H., Xia, Y.: High-speed low-power MCML nanometer circuits with near-threshold computing. JCP 8(1), 129–135 (2013)

    Google Scholar 

  16. Saha, A., Pal, D., Chandra, M., Goswami, M.K.: Novel high speed MCML 8-bit by 8-bit multiplier. In: Devices and Communications (ICDeCom), 2011 International Conference on, pp. 1–5. IEEE (2011)

  17. Regazzoni, F., Eisenbarth, T., Poschmann, A., Großschädl, J., Gurkaynak, F., Macchetti, M., Ienne, P. Evaluating resistance of MCML technology to power analysis attacks using a simulation-based methodology. In: Transactions on Computational Science IV, pp. 230–243 (2009)

    Chapter  Google Scholar 

  18. Badel, S., Leblebici, Y.: Breaking the power-delay tradeoff: design of low-power high-speed MOS current-mode logic circuits operating with reduced supply voltage. In: Circuits and Systems, 2007. IEEE International Symposium on ISCAS, pp. 1871–1874 (2007)

  19. Kim, T., Jeong, Y., Yang, K.: Low-power high-speed performance of current-mode logic D flip-flop topology using negative-differential-resistance devices. IET Circuits Devices Syst. 2(2), 281–287 (2008)

    Article  Google Scholar 

  20. Cannillo, F., Toumazou, C., Lande, T.S.: Bulk-drain connected load for subthreshold MOS current-mode logic. Electron. Lett. 43(12), 662–664 (2007)

    Article  Google Scholar 

  21. Bai, Y., Song, Y., Bojnordi, M.N., Shapiro, A., Friedman, E.G., Ipek, E.: Back to the future: current-mode processor in the era of deeply scaled CMOS. IEEE Trans. VLSI Syst. 24(4), 1266–1279 (2016)

    Article  Google Scholar 

  22. Shapiro, A., Friedman, E.G.: MOS current mode logic near threshold circuits. J. Low Power Electron. Appl. 4(2), 138–152 (2014)

    Article  Google Scholar 

  23. Lin, J.F., Hwang, Y.T., Sheu, M.H., Ho, C.C.: A novel high-speed and energy efficient 10-transistor full adder design. IEEE Trans. Circuits Syst. I 54(5), 1050–1059 (2007)

    Article  Google Scholar 

  24. Sun, Y., Kursun, V.: Carbon nanotubes blowing new life into NP dynamic CMOS circuits. IEEE Trans. Circuits Syst. 61(2), 420–428 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Sai Pradeep.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradeep, K.P.S., Kumar, S.S. Design and development of high performance MOS current mode logic (MCML) processor for fast and power efficient computing. Cluster Comput 22 (Suppl 6), 13387–13395 (2019). https://doi.org/10.1007/s10586-018-1917-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-1917-5

Keywords

Navigation