Skip to main content
Log in

A primal-dual interior point method for large-scale free material optimization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Free Material Optimization (FMO) is a branch of structural optimization in which the design variable is the elastic material tensor that is allowed to vary over the design domain. The requirements are that the material tensor is symmetric positive semidefinite with bounded trace. The resulting optimization problem is a nonlinear semidefinite program with many small matrix inequalities for which a special-purpose optimization method should be developed. The objective of this article is to propose an efficient primal-dual interior point method for FMO that can robustly and accurately solve large-scale problems. Several equivalent formulations of FMO problems are discussed and recommendations on the best choice based on the results from our numerical experiments are presented. Furthermore, the choice of search direction is also investigated numerically and a recommendation is given. The number of iterations the interior point method requires is modest and increases only marginally with problem size. The computed optimal solutions obtain a higher precision than other available special-purpose methods for FMO. The efficiency and robustness of the method is demonstrated by numerical experiments on a set of large-scale FMO problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. This assumption is standard within structural optimization. In the implementation it is satisfied by forcing that \(E_i\succeq \varepsilon I\) for some small \(\varepsilon >0\).

References

  1. Achtziger, W., Bendsøe, M., Ben-Tal, A., Zowe, J.: Equivalent displacement based formulations for maximum strength truss topology design. Impact Comput. Sci. Eng. 4, 315–345 (1992)

    Article  MATH  Google Scholar 

  2. Alizadeh, F., Haeberly, J., Overton, M.: Primal-dual interior-point methods for semidefinite programming: convergence rates, stability and numerical results. SIAM J. Opt. 8(3), 746–768 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bendsøe, M., Díaz, A.: Optimization of material properties for Mindlin plate design. Struct. Opt. 6, 268–270 (1993)

    Article  Google Scholar 

  4. Bendsøe, M., Guedes, J., Haber, R., Pedersen, P., Taylor, J.: An analytical model to predict optimal material properties in the context of optimal structural design. J. Appl. Mech. 61, 930–937 (1994)

    Article  Google Scholar 

  5. Benson, H., Shanno, D.: Interior-point methods for nonconvex nonlinear programming: regularization and warmstarts. Comput. Opt. Appl. 40, 143–189 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ben-Tal, A., Nemirovski, A.: Robust truss topology design via semidefinite programming. SIAM J. Opt. 7(4), 991–1016 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ben-Tal, A., Kočvara, M., Nemirovski, A., Zowe, J.: Free material design via semidefinite programming: the multiload case with contact conditions. SIAM J. Opt. 9(4), 813–832 (1999)

    Article  MATH  Google Scholar 

  8. Ben-Tal, A., Nemirovski, A.: Handbook of Semidefinite Programming, Structural Design. Kluwer Academic Publishers, Philip Drive Norwell, MA (2000)

    Google Scholar 

  9. Cook, R., Malkus, D., Plesha, M., Witt, R.: Concepts and Applications of Finite Element Analysis, 4th edn. John Wiley, Hoboken (2002)

    Google Scholar 

  10. Dolan, E., Moré, J.: Benchmarking optimization software with performance profiles. Math. Program. 97(A), 201–213 (2002)

    Article  Google Scholar 

  11. Forsgren, A., Gill, P.: Primal-dual interior methods for nonconvex nonlinear programming. SIAM J. Opt. 8(4), 1132–1152 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Forsgren, A., Gill, P., Wright, M.: Interior methods for nonlinear optimization. SIAM Rev. 44(4), 525–597 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gaile, S.: Free material optimization for shells and plates. Ph.D. thesis, Institute of Applied Mathematics II, Friedrich–Alexander University of Erlangen–Nuremberg (2011)

  14. Golub, G., Van Loan, C.: Matrix Comput., 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    Google Scholar 

  15. Haslinger, J., Kočvara, M., Leugering, G., Stingl, M.: Multidisciplinary free material optimization. SIAM J. Appl. Math. 70(7), 2709–2728 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Helmberg, C., Rendl, F., Vanderbei, R., Wolkowicz, H.: An interior-point method for semidefinite programming. SIAM J. Opt. 6, 342–361 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kočvara, M., Stingl, M.: PENNON a code for convex nonlinear and semidefinite programming. Opt. Methods Softw. 18(3), 317–333 (2003)

    Article  MATH  Google Scholar 

  18. Kočvara, M., Stingl, M.: Free material optimization for stress constraints. Struct. Multidiscip. Opt. 33, 323–335 (2007)

    Article  Google Scholar 

  19. Kočvara, M., Stingl, M., Zowe, J.: Free material optimization: recent progress. Optimization 57(1), 79–100 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kojima, M., Shindoh, S., Hara, S.: Interior-point methods for the monotone semidefinite linear complementarity problem in symmetric matrices. SIAM J. Opt. 7(1), 86–125 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Monteiro, R.: Primal-dual path-following algorithms for semidefinite programming. SIAM J. Opt. 7(3), 663–678 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Monteiro, R.: First- and second-order methods for semidefinite programming. Math. Program. 97, 209–244 (2003)

    MATH  MathSciNet  Google Scholar 

  23. Nesterov, Y., Todd, M.: Self-scaled barriers and interior-point methods for convex programming. Math. Oper. Res. 22(1), 1–42 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  24. Nesterov, Y., Todd, M.: Primal-dual interior-point methods for self-scaled cones. SIAM J. Opt. 8(2), 324–364 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ringertz, U.: On finding the optimal distribution of material properties. Struct. Opt. 5, 265–267 (1993)

    Article  Google Scholar 

  26. Stingl, M.: On the solution of nonlinear semidefinite programs by augmented lagrangian method. Ph.D. thesis, Institute of Applied Mathematics II, Friedrich–Alexander University of Erlangen–Nuremberg (2006). http://www2.am.uni-erlangen.de/

  27. Stingl, M., Kočvara, M., Leugering, G.: Free material optimization with fundamental eigenfrequency constraints. SIAM J. Opt. 20(1), 524–547 (2009)

    Article  MATH  Google Scholar 

  28. Stingl, M., Kočvara, M., Leugering, G.: A new non-linear semidefinite programming algorithm with an application to multidisciplinary free material optimization. Int. Ser. Numer. Math. 158, 275–295 (2009)

    Google Scholar 

  29. Stingl, M., Kočvara, M., Leugering, G.: A sequential convex semidefinite programming algorithm with an application to multiple-load free material optimization. SIAM J. Opt. 20(1), 130–155 (2009)

    Article  MATH  Google Scholar 

  30. Todd, M.: A study of search directions in primal-dual interior-point methods for semidefinite programming. Opt. Methods Softw. 11, 1–46 (1999)

    Article  MathSciNet  Google Scholar 

  31. Todd, Y., Toh, K., Tütüncü, R.: On the Nesterov–Todd direction in semidefinite programming. SIAM J. Opt. 8(3), 769–796 (1998)

    Article  MATH  Google Scholar 

  32. Vogelbusch, C.H.: Numerical treatment of nonlinear semidefinite programs. Ph.D. thesis, Institut für Mathematik der Heinrich–Heine–Universität Düsseldorf (2006). http://docserv.uni-duesseldorf.de/

  33. Waltz, R., Morales, J., Nocedal, J., Orban, D.: An interior algorithm for nonlinear optimization that combines line search and trust region steps. Math. Program. 107, 391–408 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Werner, R.: Free material optimization-mathematical analysis and numerical solution. Ph.D. thesis, Institute of Applied Mathematics II, Friedrich–Alexander University of Erlangen–Nuremberg (2001)

  35. Yamashita, H., Yabe, H., Harada, K.: A primal-dual interior point method for nonlinear semidefinite programming. Math. Program. 135, 89–121 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  36. Zhang, Y.: On extending some primal-dual interior-point algorithms from linear programming to semidefinite programming. SIAM J. Opt. 8(2), 365–386 (1998)

    Article  MATH  Google Scholar 

  37. Zowe, J., Kočvara, M., Bendsøe, M.: Free material optimization via mathematical programming. Math. Program. 79, 445–466 (1997)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank two reviewers for their constructive and insightful comments and suggestions. We also would like to express our gratitude to our former colleague Stefanie Gaile for many and fruitful discussions on Free Material Optimization. The research was partially funded by the Danish Council for Strategic Research through the Danish Center for Composite Structures and Materials (DCCSM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alemseged Gebrehiwot Weldeyesus.

Appendices

Appendix 1

In this Appendix we derive the dual formulation (8) of the minimum weighted compliance problem (3). Similar result for minimax problems can be found in [7]. Analogous all-quadratic formulations of minimum compliance truss topology optimization problems are described, for example, in [1]. The linear elasticity static structural analysis problem can be written as

$$\begin{aligned} \begin{aligned} \underset{u_\ell }{\sup }&\left\{ 2f_\ell ^Tu_\ell -u_\ell ^TA(E)u_\ell \right\} \end{aligned} \end{aligned}$$

which is a quadratic problem with negative definite Hessian and hence a concave maximization problem. The optimality condition is \(A(E)u_\ell =f_\ell \) and the optimal value is \(f_\ell ^Tu_\ell \) if \(f_\ell \in \mathcal {R}(A(E))\) and \(-\infty \) otherwise. Due to the stated assumptions we replace the \(\sup \) with \(\max \) in the following. Therefore, the minimum compliance problem (3) is equivalent to

(42)

The Lagrangian \(\mathcal {L}\) associated with (42) is

$$\begin{aligned} \begin{aligned} \mathcal {L}(E,u_\ell ,\alpha ,\bar{\beta },\underline{\beta })&= \sum \limits _{\ell \in L}w_\ell \underset{u_\ell }{\max } \left\{ 2f_\ell ^Tu_\ell -u_\ell ^TA(E)u_\ell \right\} +\sum \limits _{i=1}^m \underline{\beta }_i(-Tr(E_i)+\underline{\rho })\\&\quad +\sum \limits _{i=1}^m \bar{\beta }_i(Tr(E_i)-\bar{\rho })+\alpha \left( \sum \limits _{i=1}^mTr(E_i)-\bar{V}\right) \\&= \underset{u_1,\ldots ,u_{n_L}}{\max }\sum \limits _{\ell \in L}w_\ell (2f_\ell ^Tu_\ell -u_\ell ^TA(E)u_\ell )+\sum \limits _{i=1}^m \underline{\beta }_i(-Tr(E_i)+\underline{\rho })\\&\quad +\sum \limits _{i=1}^m \bar{\beta }_i(Tr(E_i)-\bar{\rho })+\alpha \left( \sum \limits _{i=1}^mTr(E_i)-\bar{V}\right) \\&= \underset{u_1,\ldots ,u_{n_L}}{\max }\left( \sum \limits _{\ell \in L}w_\ell (2f_\ell ^Tu_\ell \!-\!u_\ell ^TA(E)u_\ell )\!+\!\sum \limits _{i=1}^m \underline{\beta }_i(-Tr(E_i)+\underline{\rho })\right. \\&\quad \left. +\sum \limits _{i=1}^m \bar{\beta }_i(Tr(E_i)-\bar{\rho })+\alpha \left( \sum \limits _{i=1}^mTr(E_i)-\bar{V}\right) \right) \\&=\underset{u_1,\ldots ,u_{n_L}}{\max }\Big (\sum \limits _{\ell \in L}2w_\ell f_\ell ^Tu_\ell -\alpha \bar{V}+\underline{\rho }\sum \limits _{i=1}^m \underline{\beta }_i-\bar{\rho }\sum \limits _{i=1}^m\bar{\beta }_i\\&\quad +\sum _{i=1}^m \Big \langle E_i,(\alpha -\underline{\beta }_i+ \bar{\beta }_i)I-\sum _{\ell \in L}\sum _{k=1}^{n_G}w_\ell B_{i,k}^Tu_\ell u_\ell ^T B_{i,k}\Big \rangle \Big ). \end{aligned} \end{aligned}$$

The corresponding dual function is

$$\begin{aligned}&g(u_1,\ldots ,u_{n_L},\bar{\beta },\underline{\beta },\alpha )\\&\quad =\underset{ E_1,\ldots ,E_m\succeq 0}{\text {minimize}}\;\underset{u_1,\ldots ,u_{n_L}}{\max }\Big (\sum _{\ell \in L}2w_\ell f_\ell ^Tu_\ell -\alpha \bar{V}+\underline{\rho }\sum _{i=1}^m \underline{\beta }_i-\bar{\rho }\sum _{i=1}^m\bar{\beta }_i\\&\quad \quad +\sum _{i=1}^m \Big \langle E_i,(\alpha -\underline{\beta }_i+ \bar{\beta }_i)I-\sum _{\ell \in L}\sum _{k=1}^{n_G}w_\ell B_{i,k}^Tu_\ell u_\ell ^T B_{i,k}\Big \rangle \Big )\\&\quad = \left\{ \begin{array}{l l} \underset{u_1,\ldots ,u_{n_L}}{\max }(\sum _{\ell \in L}2w_\ell f_\ell ^Tu_\ell -\alpha \bar{V}+\underline{\rho }\sum _{i=1}^m \underline{\beta }_i-\bar{\rho }\sum _{i=1}^m\bar{\beta }_i) &{} \quad \text {if}\;(43)\;\text {holds}\\ -\infty &{} \quad \text {otherwise}.\\ \end{array} \right. \end{aligned}$$

Below is the condition that the dual function \(g\) attains its minimum value.

$$\begin{aligned} \begin{aligned} \sum _{\ell \in L}\sum _{k=1}^{n_G}w_\ell B_{i,k}^Tu_\ell u_\ell ^T B_{i,k}\preceq (\alpha -\underline{\beta }_i+ \bar{\beta }_i)I,\quad i=1,\ldots ,m. \end{aligned} \end{aligned}$$
(43)

The dual formulation of the minimum compliance problem (3) becomes

$$\begin{aligned} \begin{array}{lll} &{} \underset{u_1,\ldots ,u_{n_L},\alpha \ge 0,\bar{\beta }\ge 0,\underline{\beta }\ge 0}{\text {sup}} &{} -\alpha \bar{V}+2\sum _{\ell \in L}w_\ell f_\ell ^Tu_\ell +\underline{\rho }\sum _{i=1}^m \underline{\beta }_i-\bar{\rho }\sum _{i=1}^m\bar{\beta }_i\\ &{} \text {subject to} &{} \sum _{\ell \in L}\sum _{k=1}^{n_G}w_\ell B_{i,k}^Tu_\ell u_\ell ^T B_{i,k}-(\alpha \!-\!\underline{\beta }_i\!+\! \bar{\beta }_i)I\preceq 0,\\ &{}&{} i\!=\!1,\ldots ,m. \end{array} \end{aligned}$$

Appendix 2

The following products are in tensor notation.

  1. 1.

    \((\nabla _{X_rX_s}^2\mathcal {L}_\mu (X,u,s,\lambda )\varDelta X_s)_{ij}=(\nabla _{X_rX_s}^2\mathcal {L}_\mu (X,u,s,\lambda ))_{ijpq}(\varDelta X_s)_{pq}\), for \(r,s=1,\ldots ,m\), for \(i,j=1,\ldots ,d_r\), and for \(p,q=1,\ldots ,d_s\).

  2. 2.

    \((\nabla _{X_ru}^2\mathcal {L}_\mu (X,u,s,\lambda )\varDelta X_r)_{i}\!=\!(\nabla _{uX_r}^2\mathcal {L}_\mu (X,u,s,\lambda ))_{ipq}(\varDelta X_r)_{pq}\), for \(r\!=\!1,\ldots ,m\), for \(p,q=1,\ldots ,d_r\), and for \(i=1,\ldots ,n\).

  3. 3.

    \((\nabla _{X_ru}^2\mathcal {L}_\mu (X,u,s,\lambda )^T\varDelta u)_{ij}=(\nabla _{X_ru}^2\mathcal {L}_\mu (X,u,s,\lambda ))_{ijp}(\varDelta u)_{p}\), for \(r=1,\ldots ,m\), for \(i,j=1,\ldots ,d_r\), and for \(p=1,\ldots ,n\).

  4. 4.

    \((\nabla _{X_r}g(X,u)^T\varDelta \lambda )_{ij}=(\nabla _{X_r}(g(X,u)^T\varDelta \lambda ))_{ij}\), for \(r=1,\ldots ,m\), and for \(i,j=1,\ldots ,d_r\).

  5. 5.

    \((\nabla _{X_r}g(X,u)\varDelta X_r)_i=(\nabla _{X_r}g_i(X,u))_{pq}(\varDelta X_r)_{pq}\), for \(r=1,\ldots ,m\), for \(p,q=1,\ldots ,d_r\), and for \(i=1,\ldots ,k\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weldeyesus, A.G., Stolpe, M. A primal-dual interior point method for large-scale free material optimization. Comput Optim Appl 61, 409–435 (2015). https://doi.org/10.1007/s10589-014-9720-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-014-9720-6

Keywords

Mathematics Subject Classification

Navigation