Skip to main content

Advertisement

Log in

Delayed genetic effects of habitat fragmentation on the ecologically specialized Florida sand skink (Plestiodon reynoldsi)

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Populations rarely show immediate genetic responses to habitat fragmentation, even in taxa that possess suites of traits known to increase their vulnerability to extinction. Thus conservation geneticists must consider the time scale over which contemporary evolutionary processes operate to accurately portray the effects of habitat isolation. Here, we examine the genetic impacts of fragmentation on the Florida sand skink Plestiodon reynoldsi, a sand swimming lizard that is highly adapted to the upland scrub habitat of central Florida. We studied fragments located on the southern Lake Wales Ridge, where human activity in the latter half of the 20th century has modified the natural patchiness of the landscape. Based on a relaxed molecular clock method, we estimate that sand skinks have persisted in this region for approximately 1.5 million years and that the time frame of human disturbance is equivalent to fewer than 30 skink generations. Using genotypes from eight microsatellite loci, we screened for molecular signatures of this disturbance by assessing congruence between population structure, as inferred from spatially-informed Bayesian assignment tests, and the current geography of scrub fragments. We also tested for potential intrapopulation genetic effects of inbreeding in isolated populations by comparing the average pairwise relatedness of individuals within fragments of different areas and isolation. Our results indicate that although some patches show a higher degree of relatedness than expected under random mating, the genetic effects of recent isolation are not evident in this part of the species’ range. We argue that this result is an artefact of a time-lag in the response to disturbance, and that species-typical demographic features may explain the genetic inertia observed in these populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrén H (1994) Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71:355–366. doi:10.2307/3545823

    Article  Google Scholar 

  • Antoniak CE (1974) Mixtures of Dirichlet processes with applications to non-parametric problems. Ann Stat 2:1152–1174. doi:10.1214/aos/1176342871

    Article  Google Scholar 

  • Archie JW (1985) Statistical analysis of heterozygosity data: independent sample comparisons. Evol Int J Org Evol 39:623–637. doi:10.2307/2408657

    Google Scholar 

  • Ashton KG (2005) Life history of a fossorial lizard, Neoseps reynoldsi. J Herpetol 39:389–395. doi:10.1670/148-04A.1

    Article  Google Scholar 

  • Berry O, Tocher MD, Gleeson DM, Sarre SD (2005) Effect of vegetation matrix on animal dispersal: genetic evidence from a study of endangered skinks. Conserv Biol 19:855–864. doi:10.1111/j.1523-1739.2005.00161.x

    Article  Google Scholar 

  • Bonnet E, Van de Peer Y (2002) zt: a software tool for simple and partial Mantel tests. J Stat Softw 7:1–12

    Google Scholar 

  • Branch LC, Hokit DG (2000) A comparison of scrub herpetofauna on two central Florida sand ridges. Fla Sci 63:108–117

    Google Scholar 

  • Branch LC, Clark AM, Moler P, Bowen BW (2003) Fragmented landscapes, habitat specificity, and conservation genetics of three lizards in Florida scrub. Conserv Genet 4:199–212. doi:10.1023/A:1023398908793

    Article  CAS  Google Scholar 

  • Brandley MC, Schmitz A, Reeder TW (2005) Partitioned Bayesian analysis, partition choice, and the phylogenetic relationships of scincid lizards. Syst Biol 54:373–390. doi:10.1080/10635150590946808

    Article  PubMed  Google Scholar 

  • Brooks TM, Pimm SL, Oyugi JO (1999) Time lag between deforestation and bird extinction in tropical forest fragments. Conserv Biol 13:1140–1150. doi:10.1046/j.1523-1739.1999.98341.x

    Article  Google Scholar 

  • Caro T (2007) Behavior and conservation: a bridge too far? Trends Ecol Evol 22:394–400. doi:10.1016/j.tree.2007.06.003

    Article  PubMed  Google Scholar 

  • Castellano S, Balleto E (2002) Is the partial Mantel test inadequate? Evol Int J Org Evol 56:1871–1873

    Google Scholar 

  • Chen C, Durand E, Forbes F, Francois O (2007) Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Mol Ecol Notes 7:747–756. doi:10.1111/j.1471-8286.2007.01769.x

    Article  Google Scholar 

  • Christman SP (1992) Threatened: sand skink, Neoseps reynoldsi (Stejneger). In: Moler PE (ed) Rare and endangered biota of Florida. Volume III amphibians and reptiles. University of Florida Press, Gainesville

    Google Scholar 

  • Christman SP (2005) Densities of Neoseps reynoldsi on the Lake Wales Ridge. Final report submitted to U.S. Fish and Wildlife Service, Vero Beach, FL

  • Clark AM, Bowen BW, Branch LC (1999) Effects of natural habitat fragmentation on an endemic scrub lizard (Sceloporus woodi): an historical perspective based on a mitochondrial DNA gene genealogy. Mol Ecol 8:1093–1104. doi:10.1046/j.1365-294x.1999.00653.x

    Article  CAS  PubMed  Google Scholar 

  • Collazos A (1998) Microhabitat selection in Neoseps reynoldsi, the Florida sand swimming skink. Master’s Thesis, University of South Florida

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  PubMed  Google Scholar 

  • Cowlishaw G (1999) Predicting the pattern of decline of African primate diversity: an extinction debt from historical deforestation. Conserv Biol 13:1183–1193. doi:10.1046/j.1523-1739.1999.98433.x

    Article  Google Scholar 

  • Davies KF, Margules CR, Lawrence JF (2004) A synergistic effect puts rare, specialized species at greater risk of extinction. Ecology 85:265–271. doi:10.1890/03-0110

    Article  Google Scholar 

  • Deyrup M (1996) Two new grasshoppers from relict uplands of Florida (Orthoptera: Acrididae). Trans Am Entomol Soc 122:199–211

    Google Scholar 

  • Didham RK, Hammond PM, Lawton JH, Eggleton P, Stork NE (1998) Beetle species responses to tropical forest fragmentation. Ecol Monogr 68:295–323

    Article  Google Scholar 

  • Driscoll DA, Hardy CM (2005) Dispersal and phylogeography of the agamid lizard Amphibolurus nobbi in fragmented and continuous habitat. Mol Ecol 14:1613–1629. doi:10.1111/j.1365-294X.2005.02509.x

    Article  CAS  PubMed  Google Scholar 

  • Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:699–710. doi:10.1371/journal.pbio.0040088

    Article  CAS  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214. doi:10.1186/1471-2148-7-214

  • Endler JA (1986) Natural selection in the wild. Princeton University Press, Princeton

    Google Scholar 

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev Camb Philos Soc 81:117–142. doi:10.1017/S1464793105006949

    PubMed  Google Scholar 

  • Excoffier L (2003) Analysis of population subdivision. In: Balding DJ, Bishop M, Cannings C (eds) Handbook of statistical genetics. John Wiley and Sons, Ltd., New York, pp 713–750

    Google Scholar 

  • Fahrig L (2002) Effect of habitat fragmentation on the extinction threshold: a synthesis. Ecol Appl 12:346–353

    Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515. doi:10.1146/annurev.ecolsys.34.011802.132419

    Article  Google Scholar 

  • Fisher RA (1922) On the interpretation of chi-squared from contingency tables, and the calculation of P. J R Stat Soc [Ser A] 85:87–94. doi:10.2307/2340521

  • Foufopoulos J, Ives AR (1999) Reptile extinctions on land-bridge islands: life-history attributes and vulnerability to extinction. Am Nat 153:1–25. doi:10.1086/303149

    Article  Google Scholar 

  • François O, Ancelet S, Guillot G (2006) Bayesian clustering using hidden Markov random fields in spatial population genetics. Genetics 174:805–816. doi:10.1534/genetics.106.059923

    Article  PubMed  CAS  Google Scholar 

  • Gaggiotti OE, Lange O, Rassmann K, Gliddon C (1999) A comparison of two indirect methods for estimating average levels of gene flow using microsatellite data. Mol Ecol 8:1513–1520. doi:10.1046/j.1365-294x.1999.00730.x

    Article  CAS  PubMed  Google Scholar 

  • Galbusera P, Githiru M, Lens L, Matthysen E (2004) Genetic equilibrium despite habitat fragmentation in an Afrotropical bird. Mol Ecol 13:1409–1421. doi:10.1111/j.1365-294X.2004.02175.x

    Article  CAS  PubMed  Google Scholar 

  • Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318. doi:10.1046/j.1365-294x.2001.01190.x

    Article  CAS  PubMed  Google Scholar 

  • Gelfand AE, Schmidt AM, Wu S, Silander JA, Latimer A, Rebelo AG (2005) Modelling species diversity through species level hierarchical modelling. J Roy Stat Soc C-App 54:1–20

    Article  Google Scholar 

  • Gianopulos KD (2001) Response of the threatened sand skink (Neoseps reynoldsi) and other herpetofaunal species to burning and clearcutting in the Florida sand pine scrub habitat. Master’s Thesis, University of South Florida

  • Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F statistics. J Hered 86:485–486

    Google Scholar 

  • Greenberg CH, Neary DG, Harris LD (1994) Effect of high-intensity wildfire and silvicultural treatments on reptile communities in sand-pine scrub. Conserv Biol 8:1047–1057. doi:10.1046/j.1523-1739.1994.08041047.x

    Article  Google Scholar 

  • Hall JM, Gillespie TW, Richardson D, Reader S (2002) Fragmentation of Florida scrub in an urban landscape. Urban Ecosyst 6:143–255. doi:10.1023/B:UECO.0000004825.51640.8b

    Article  Google Scholar 

  • Hanski I, Ovaskainen O (2002) Extinction debt at extinction threshold. Conserv Biol 16:666–673. doi:10.1046/j.1523-1739.2002.00342.x

    Article  Google Scholar 

  • Hokit DG, Stith BM, Branch LC (1999) Effects of landscape structure in Florida scrub: a population perspective. Ecol Appl 9:124–134. doi:10.1890/1051-0761(1999)009[0124:EOLSIF]2.0.CO;2

    Article  Google Scholar 

  • Huelsenbeck JP, Andolfatto P (2007) Inference of population structure under a Dirichlet process model. Genetics 175:1787–1802. doi:10.1534/genetics.106.061317

    Article  CAS  PubMed  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806. doi:10.1093/bioinformatics/btm233

    Article  CAS  PubMed  Google Scholar 

  • Kalinowski ST (2005) HP-Rare: a computer program for performing rarefaction on measures of allelic diversity. Mol Ecol Notes 5:187–189. doi:10.1111/j.1471-8286.2004.00845.x

    Article  CAS  Google Scholar 

  • Lacy RC (1987) Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision. Conserv Biol 1:143–158. doi:10.1111/j.1523-1739.1987.tb00023.x

    Article  Google Scholar 

  • Lande R (1995) Mutation and conservation. Conserv Biol 9:782–791. doi:10.1046/j.1523-1739.1995.09040782.x

    Article  Google Scholar 

  • Latimer A, Wu S, Gelfand AE, Silander JAJ (2006) Building statistical models to analyze species distributions. Ecol Appl 16:33–50. doi:10.1890/04-0609

    Article  PubMed  Google Scholar 

  • Lee DS (1969) Moisture toleration: a possible key to dispersal ability in three fossorial lizards. Bull Md Herpetol Soc 5:53–56

    Google Scholar 

  • Lohrer FE (1993) Archbold biological station biennial report 1991–1992. Archbold Biological Station, Lake Placid, Florida

    Google Scholar 

  • MacEachern SN, Muller P (1998) Estimating mixture of Dirichlet process models. J Comput Graph Statist 7:223–238. doi:10.2307/1390815

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • McCoy ED, Mushinsky HR (1992) Rarity of organisms in the sand pine scrub habitat of Florida. Conserv Biol 6:537–548. doi:10.1046/j.1523-1739.1992.06040537.x

    Article  Google Scholar 

  • McCoy ED, Mushinsky HR (1994) Effects of fragmentation on the richness of vertebrates in the Florida scrub habitat. Ecology 75:446–457. doi:10.2307/1939548

    Article  Google Scholar 

  • McCoy ED, Sutton PE, Mushinsky HR (1999) The role of guesswork in conserving the threatened sand skink. Conserv Biol 13:190–194. doi:10.1046/j.1523-1739.1999.97394.x

    Article  Google Scholar 

  • McKinney ML (1997) Extinction vulnerability and selectivity: combining ecological and paleontological views. Annu Rev Ecol Syst 28:495–516. doi:10.1146/annurev.ecolsys.28.1.495

    Article  Google Scholar 

  • McLoughlin PD, Paetkau D, Duda M, Boutin S (2004) Genetic diversity and relatedness of boreal caribou populations in western Canada. Biol Conserv 118:593–598. doi:10.1016/j.biocon.2003.10.008

    Article  Google Scholar 

  • Meneken BM, Knipps ACS, Layne JN, Ashton KG (2005) Neoseps reynoldsi. Longevity. Herpetol Rev 37:164–165

    Google Scholar 

  • Meshaka JWE, Layne JN (2002) Herpetofauna of a long-unburned sandhill habitat in south-central Florida. Fla Sci 65:35–50

    Google Scholar 

  • Myers RL (1990) Scrub and high pine. University of Central Florida Press, Orlando

    Google Scholar 

  • Myers RL (1991) Scrub and high pine. In: Myers RL, Ewel JJ (eds) Ecosystems of Florida. University of Central Florida Press, Orlando

    Google Scholar 

  • Ovaskainen O, Hanski I (2004) Metapopulation dynamics in highly fragmented landscapes. In: Hanski I, Ovaskainen O (eds) Ecology, genetics, and evolution of metapopulations. Elsevier Academic Press, San Diego, pp 73–103

    Chapter  Google Scholar 

  • Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi:10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  • Pella J, Masuda M (2006) The Gibbs and split-merge sampler for population mixture analysis from genetic data with incomplete baselines. Can J Fish Aquat Sci 63:576–596. doi:10.1139/f05-224

    Article  Google Scholar 

  • Penney KM (2001) Factors affecting translocation success and estimates of dispersal and movement patterns of the sand skink Neoseps reynoldsi on restored scrub. M.S. Thesis, University of South Florida, Tampa, FL

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evol Int J Org Evol 43:258–275. doi:10.2307/2409206

    Google Scholar 

  • Raufaste N, Rousset F (2001) Are partial Mantel tests adequate? Evol Int J Org Evol 55:1703–1705

    CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248

    Google Scholar 

  • Reid DT, Ashton KG, Zamudio KR (2004) Characterization of microsatellite markers in the threatened sand skink (Neoseps reynoldsi). Mol Ecol Notes 4:691–693. doi:10.1111/j.1471-8286.2004.00788.x

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Springs Harbor Laboratory Press, Cold Springs Harbor

    Google Scholar 

  • Sarre SD, Smith GT, Meyers JA (1995) Persistence of two species of gecko (Oedura reticulata and Gehyra variegata) in remnant habitat. Biol Conserv 71:25–33. doi:10.1016/0006-3207(94)00017-K

    Article  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) ARLEQUIN, version 2.000: a software for population genetics data analysis. Genetic and Biometry Laboratory, University of Geneva, Geneva

    Google Scholar 

  • Simberloff D (1986) The proximate causes of extinction. In: Raup DM, Jablonski D (eds) Patterns and processes in the history of life. Springer-Verlag, Berlin, pp 259–276

    Google Scholar 

  • Smouse PE, Long JC, Sokal RR (1996) Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst Zool 35:627–632. doi:10.2307/2413122

    Article  Google Scholar 

  • Stamps JA, Buechner M, Krishnan VV (1987) The effects of edge permeability and habitat geometry on emigration from patches of habitat. Am Nat 129:533–552. doi:10.1086/284656

    Article  Google Scholar 

  • Steffan-Dewenter I, Tscharntke T (2000) Butterfly community structure in fragmented habitats. Ecol Lett 3:449–456. doi:10.1111/j.1461-0248.2000.00175.x

    Article  Google Scholar 

  • Stockwell CA, Hendry AP, Kinnison MT (2003) Contemporary evolution meets conservation biology. Trends Ecol Evol 18:94–101. doi:10.1016/S0169-5347(02)00044-7

    Article  Google Scholar 

  • Stow AJ, Briscoe DA (2005) Impact of habitat fragmentation on allelic diversity at microsatellite loci in Cunningham’s skink (Egernia cunninghami); a preliminary study. Conserv Genet 6:455–459. doi:10.1007/s10592-005-4976-0

    Article  Google Scholar 

  • Sumner J, Jessop T, Paetkau D, Moritz C (2004) Limited effect of anthropogenic habitat fragmentation on molecular diversity in a rain forest skink, Gnypetoscincus queenslandiae. Mol Ecol 13:259–269. doi:10.1046/j.1365-294X.2003.02056.x

    Article  PubMed  Google Scholar 

  • Sutton PE (1996) A mark-recapture study of the Florida sand skink Neoseps reynoldsi and a comparison of sand skink sampling methods. Master’s Thesis, University of South Florida

  • Swei A, Brylski PV, Spencer WD, Dodd SC, Patton JL (2003) Hierarchical genetic structure in fragmented populations of the little pocket mouse (Perognathus longimembris) in Southern California. Conserv Genet 4:501–514. doi:10.1023/A:1024768831808

    Article  CAS  Google Scholar 

  • Szacki J (1999) Spatially structured populations: how much do they match the classic metapopulation concept? Landscape Ecol 14:369–379. doi:10.1023/A:1008058208370

    Article  Google Scholar 

  • Telford SR (1959) A study of the sand skink, Eumeces reynoldsi Stejneger. Copeia 2:100–119

    Google Scholar 

  • Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371:65–66. doi:10.1038/371065a0

    Article  Google Scholar 

  • Tscharntke T, Steffan-Dewenter I, Kruess A, Thies C (2002) Characteristics of insect populations on habitat fragments: a mini review. Ecol Res 17:229–239. doi:10.1046/j.1440-1703.2002.00482.x

    Article  Google Scholar 

  • Vellend M (2003) Island biogeography of genes and species. Am Nat 162:358–365. doi:10.1086/377189

    Article  PubMed  Google Scholar 

  • Watson DM (2002) A conceptual framework for studying species composition in fragments, islands and other patchy ecosystems. J Biogeogr 29:823–834. doi:10.1046/j.1365-2699.2002.00726.x

    Article  Google Scholar 

  • Watson DM (2003) Long-term consequences of habitat fragmentation—highland birds in Oaxaca, Mexico. Biol Conserv 111:283–303. doi:10.1016/S0006-3207(02)00271-9

    Article  Google Scholar 

  • Webb SD (1990) Historical biogeography. In: Myers RL, Ewel JJ (eds) Ecosystems of Florida. University of Central Florida Press, Orlando, pp 70–102

    Google Scholar 

  • Weekley CW, Menges ES, Pickert RL (2007) An ecological map of Florida’s Lake Wales Ridge: a new boundary delineation and an assessment of post-Columbian habitat loss. Fla Sci 71:45–64

    Google Scholar 

  • Wiens JA (1997) Metapopulation dynamics and landscape ecology. In: Hanski IA, Gilpin ME (eds) Metapopulation biology. Ecology, genetics and evolution. Academic Press, San Diego, pp 32–60

    Google Scholar 

  • Wood D (1996) Official lists of Florida’s endangered species, threatened species and species of special concern. Florida Game and Fresh Water Fish Commission, Tallahassee, Florida, USA

    Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–158

    CAS  PubMed  Google Scholar 

  • Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evol Int J Org Evol 19:395–420. doi:10.2307/2406450

    Google Scholar 

  • Wright S (1978) Evolution and the genetics of populations. University of Chicago Press, Chicago

    Google Scholar 

  • Young AC, Clarke GM (2000) Genetics, demography and viability of fragmented populations. University Press, Cambridge

    Google Scholar 

  • Zwick PD, Carr MH (2006) Florida 2060. A population distribution scenario for the state of Florida. http://www.1000friendsofflorida.org/PUBS/2060/Florida-2060-Report-Final.pdf.

Download references

Acknowledgements

We thank A. Knipps, B. Branciforte, B. Meneken, J. Zipser, and volunteers from the Earthwatch Institute for help with fieldwork, S. Bogdanowicz for help with microsatellite development, and R. Pickert for assistance with GIS landscape modelling. H. Mushinsky provided constructive comments on the manuscript. We also thank H. Swain for providing support with field efforts and landscape modelling at the Archbold Biological Station. O. François provided valuable advice concerning the HMRF models. R. Bukowski facilitated the use of computer resources at the Computational Biology Service Unit (Cornell University) that receives partial funding from Microsoft. This study was funded by research grants from: Archbold Biological Station, the Florida Fish and Wildlife Conservation Commission, and the Earthwatch Institute (KGA); the Cornell Hughes Scholars Program, Sigma Xi Grants in Aid of Research, Einhorn Discovery Grant, and the Cornell Undergraduate Board (DTR); and the National Science Foundation (DEB 9907798) and Cornell College of Arts and Sciences (KZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Q. Richmond.

Appendix 1

Appendix 1

Populations and sample sizes of Plestiodon reynoldsi included in our study. Locality coordinates are reported for the centre of the minimum convex polygon formed by pitfall traps within a site.

 

Locality

Name

N

Lat

Long

HHP

Highlands Hammock State Park

10

27.4283

−81.5192

HPE

Highland Park Estates

12

27.3348

−81.3452

LJW

Lake June-in-Winter

11

27.3121

−81.4201

LPS

Lake Placid Scrub

10

27.2124

−81.3772

SSr99

Archbold Biological Station SSr99

11

27.2015

−81.3559

SSr67

Archbold Biological Station SSr67

32

27.2007

−81.3558

SH

Sandhill

13

27.1858

−81.3408

SSr55

Archbold Biological Station SSr55

25

27.1407

−81.3552

GLD

Gould Road

20

27.1317

−81.3251

SSr91

Archbold Biological Station SSr91

24

27.1233

−81.3621

HNR

Hendrie Ranch

11

27.0931

−81.3164

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richmond, J.Q., Reid, D.T., Ashton, K.G. et al. Delayed genetic effects of habitat fragmentation on the ecologically specialized Florida sand skink (Plestiodon reynoldsi). Conserv Genet 10, 1281–1297 (2009). https://doi.org/10.1007/s10592-008-9707-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-008-9707-x

Keywords

Navigation