Skip to main content

Advertisement

Log in

Genetic diversity in a narrowly endemic, recently described dusky salamander, Desmognathus folkertsi, from the southern Appalachian Mountains

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

To understand patterns of biodiversity and whether populations and species are in decline, the detection and description of cryptic biodiversity are essential. Salamanders are of particular conservation interest because they potentially harbor many undescribed species due to morphological conservatism. The dusky salamanders, genus Desmognathus, are a species-rich group in which morphologically cryptic species are especially common. Using a portion of the mitochondrial genome and amplified fragment length polymorphism (AFLP), we investigated the genetic diversity of the highly endemic, stream-dwelling salamander, Desmognathus folkertsi, across its known range in the Appalachian Mountains. Mitochondrial data revealed three well-supported lineages, one of which consisted of only one specimen; however, AFLP data were not congruent with the mitochondrial data. There was 1.11% uncorrected sequence divergence between the two well-sampled lineages. Desmognathus folkertsi exhibited 4.29% sequence divergence from the closely related D. quadramaculatus. Isolation by distance was found for both the AFLP and mitochondrial data when stream distance, rather than when straight-line (i.e., geographic) distance was used. Although genetic diversity is often partitioned by river drainages in freshwater taxa, we did not observe such a pattern in D. folkertsi. We propose that human-mediated dispersal by bait-bucket release may augment natural gene flow via aquatic dispersal across streams. Because this species was only recently discovered, the full extent of the geographic range is unknown. Therefore, an ecological niche model, using climate variables and the Maxent algorithm, was used to determine whether additional regions may be suitable for the species. The model predicted a small range limited to extreme southwestern North Carolina and extreme northeastern Georgia. We suggest future surveys be focused in these regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams DC, Rohlf FJ (2000) Ecological character displacement in Plethodon: biomechanical differences found from a geometric morphometric study. Proc Natl Acad Sci USA 97:4106–4111. doi:10.1073/pnas.97.8.4106

    Article  PubMed  CAS  Google Scholar 

  • Agrimonti C, Bianchi R, Bianchi A, Ballero M, Poli F, Marmiroli N (2007) Understanding biological conservation strategies: a molecular-genetic approach to the case of myrtle (Myrtus communis L.) in two Italian regions: Sardinia and Calabria. Conserv Genet 8:385–396. doi:10.1007/s10592-006-9177-y

    Article  CAS  Google Scholar 

  • Albach DC, Schonswetter P, Tribsch A (2006) Comparative phylogeography of the Veronica alpine complex in Europe and North America. Mol Ecol 15:3269–3286. doi:10.1111/j.1365-294X.2006.02980.x

    Article  PubMed  CAS  Google Scholar 

  • Anderson RP, Martínez-Meyer E (2004) Modeling species’ geographic distributions for preliminary conservation assessments: an implementation with the spiny pocket mice (Heteromys) of Ecuador. Biol Conserv 116:167–179. doi:10.1016/S0006-3207(03)00187-3

    Article  Google Scholar 

  • Anderson RP, Gomez-Laverde M, Peterson AT (2002) Geographical distributions of spiny pocket mice in South America: insights from predictive models. Glob Ecol Biogeogr 11:131–141. doi:10.1046/j.1466-822X.2002.00275.x

    Article  Google Scholar 

  • Andrade IM, Mayo SJ, Van Den Berg C, Fay MF, Chester M, Lexer C, Kirkup D (2007) A preliminary study of genetic variation in populations of Monstera adansonii var. klotzschiana (Araceae) from north-east Brazil, estimated with AFLP molecular markers. Ann Bot (Lond) 100:1143–1154. doi:10.1093/aob/mcm200

    Article  CAS  Google Scholar 

  • Assefa A, Labuschagne MT, Viljoen CD (2007) AFLP analysis of genetic relationships between barley (Hordeum vulgare L.) landraces from north Shewa in Ethiopia. Conserv Genet 8:273–280. doi:10.1007/s10592-006-9167-0

    Article  Google Scholar 

  • Beamer DA, Lamb T (2008) Dusky salamanders (Desmognathus, Plethodontidae) from the coastal plain: multiple independent lineages and their bearing on the molecular phylogeny of the genus. Mol Phylogenet Evol 47:143–153. doi:10.1016/j.ympev.2008.01.015

    Article  PubMed  CAS  Google Scholar 

  • Bensch S, Åkesson M (2005) Ten years of AFLP in ecology and evolution: why so few animals? Mol Ecol 14:2899–2914. doi:10.1111/j.1365-294X.2005.02655.x

    Article  PubMed  CAS  Google Scholar 

  • Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I (2006) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22(3):148–155. doi:10.1016/j.tree.2006.11.004

    Article  PubMed  Google Scholar 

  • Blears MJ, De Grandis SA, Lee H, Trevors JT (1998) Amplified fragment length polymorphism (AFLP): a review of the procedure and its applications. J Ind Microbiol Technol 21:99–114. doi:10.1038/sj.jim.2900537

    Article  CAS  Google Scholar 

  • Bonett RM, Kozak KH, Vieites DR, Bare A, Wooten JA, Trauth SE (2007) The importance of comparative phylogeography in diagnosing introduced species: a lesson from the seal salamander, Desmognathus monticola. BMC Ecol 7:7. doi:10.1186/1472-6785-7-7

    Article  PubMed  Google Scholar 

  • Burridge CP, Craw D, Waters JM (2006) River capture, range expansion, and cladogenesis: the genetic signature of freshwater vicariance. Evol Int J Org Evol 60:1038–1049

    CAS  Google Scholar 

  • Camp CD (2004) Desmognathus folkertsi Camp, Tilley, Austin, and Marshall. Cat Am Amphib Reptiles 782:1–3

    Google Scholar 

  • Camp CD, Marshall JL (2006) Reproductive life history of Desmognathus folkertsi (Dwarf Black-bellied Salamander). Southeast Nat 5:669–684. doi:10.1656/1528-7092(2006)5[669:RLHODF]2.0.CO;2

    Article  Google Scholar 

  • Camp CD, Tilley SG, Austin RM Jr, Marshall JL (2002) A new species of black-bellied salamander (Genus Desmognathus) from the Appalachian Mountains of northern Georgia. Herpetologica 58:471–484. doi:10.1655/0018-0831(2002)058[0471:ANSOBS]2.0.CO;2

    Article  Google Scholar 

  • Campbell D, Duchesne P, Bernatchez L (2003) AFLP utility for population assignment studies: analytical investigation and empirical comparison with microsatellites. Mol Ecol 12:1979–1991. doi:10.1046/j.1365-294X.2003.01856.x

    Article  PubMed  CAS  Google Scholar 

  • Carey C, Alexander MA (2003) Climate change and amphibian declines: is there a link? Divers Distrib 9:111–121. doi:10.1046/j.1472-4642.2003.00011.x

    Article  Google Scholar 

  • Carisio L, Cervella P, Palestrini C, DelPero M, Rolando A (2004) Biogeographical patterns of genetic differentiation in dung beetles of the genus Trypocopris (Coleoptera, Geotrupidae) inferred from mtDNA and AFLP analyses. J Biogeogr 31:1149–1162. doi:10.1111/j.1365-2699.2004.01074.x

    Article  Google Scholar 

  • Carr DE (1996) Morphological variation among species and populations of salamanders in the Plethodon glutinosus complex. Herpetologica 52:56–65

    Google Scholar 

  • Casgrain P, Legendre P (2001) The R package for multivariate and spatial analysis, version 4.0 d6—user’s manual. Département de sciences biologiques, Université de Montréal. Available on the WWWeb site <http://www.fas.umontreal.ca/BIOL/legendre/>

  • Chen P, Wiley EO, McNyset KM (2007) Ecological niche modeling as a predictive tool: silver and bighead carps in North America. Biol Invasions 9:43–51. doi:10.1007/s10530-006-9004-x

    Article  Google Scholar 

  • Collins JP, Storfer A (2003) Global amphibian declines: sorting the hypotheses. Divers Distrib 9:89–98. doi:10.1046/j.1472-4642.2003.00012.x

    Article  Google Scholar 

  • Costa GC, Wolfe C, Shepard DB, Caldwell JP, Vitt LJ (2008) Detecting the influence of climatic variables on species distributions: a test using GIS niche-based models along a steep longitudinal environmental gradient. J Biogeogr 35:637–646. doi:10.1111/j.1365-2699.2007.01809.x

    Article  Google Scholar 

  • Cowling RM, Pressey RL (2001) Rapid plant diversification: planning for an evolutionary future. Proc Natl Acad Sci USA 98:5452–5457. doi:10.1073/pnas.101093498

    Article  PubMed  CAS  Google Scholar 

  • Creer S, Thorpe RS, Malhotra A, Chou WH, Stenson AG (2004) The utility of AFLPs for supporting mitochondrial DNA phylogeographical analyses in the Taiwanese bamboo viper, Trimeresurus stejnegeri. J Evol Biol 17:100–107. doi:10.1046/j.1420-9101.2003.00642.x

    Article  PubMed  CAS  Google Scholar 

  • Crespi EJ, Rissler LJ, Browne RA (2003) Testing Pleisotcene refugia theory: phylogeographical analysis of Desmognathus wrighti, a high-elevation salamander in the southern Appalachians. Mol Ecol 12:969–984. doi:10.1046/j.1365-294X.2003.01797.x

    Article  PubMed  CAS  Google Scholar 

  • Curtis JMR, Taylor EB (2003) The genetic structure of coastal giant salamanders (Dicamptodon tenebrosus) in a managed forest. Biol Conserv 115:45–54. doi:10.1016/S0006-3207(03)00092-2

    Article  Google Scholar 

  • Davis EB, Koo MS, Conroy C, Patton JL, Moritz C (2008) The California hotspots project: identifying regions of rapid diversification of mammals. Mol Ecol 17:120–138. doi:10.1111/j.1365-294X.2007.03469.x

    Article  PubMed  CAS  Google Scholar 

  • Domínguez-Domínguez O, Martínez-Meyer E, Zambrano L, De L, Pérez-Ponce G (2006) Using ecological-niche modeling as a conservation tool for freshwater species: live-bearing fishes in central Mexico. Conserv Biol 20:1730–1739. doi:10.1111/j.1523-1739.2006.00588.x

    Article  PubMed  Google Scholar 

  • Ennos RA, French GC, Hollingsworth PM (2005) Conserving taxonomic complexity. Trends Ecol Evol 20:164–168. doi:10.1016/j.tree.2005.01.012

    Article  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver 3.0: an integrated software package for population genetic analysis. Evol Bioinform Online 1:47–50

    PubMed  CAS  Google Scholar 

  • Ferrier S, Watson G, Pearce J, Drielsma M (2002) Extended statistical approaches to modeling spatial pattern in biodiversity in northeast New South Wales. 1. Species-level modeling. Biodivers Conserv 11:2275–2307. doi:10.1023/A:1021302930424

    Article  Google Scholar 

  • Finn DS, Theobald DM, Black WC, Poff NL (2006) Spatial population genetic structure and limited dispersal in a Rocky Mountain alpine stream insect. Mol Ecol 15:3553–3566. doi:10.1111/j.1365-294X.2006.03034.x

    Article  PubMed  CAS  Google Scholar 

  • Frankel OH (1974) Genetic conservation: our evolutionary responsibility. Genetics 78:53–65

    PubMed  Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking, and background selection. Genetics 147:915–925

    PubMed  CAS  Google Scholar 

  • Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    PubMed  CAS  Google Scholar 

  • Garcia AF, Benchimol LL, Barbosa AMM, Geraldi IO, Souza CL, deSouza AP (2004) Comparison of RAPD, RFLP, AFLP, and SSR markers for diversity studies in tropical maize inbred lines. Genet Mol Biol 27:579–588. doi:10.1590/S1415-47572004000400019

    Article  CAS  Google Scholar 

  • García-París M, Wake DB (2000) Molecular phylogenetic analysis of relationships of the tropical salamander genera Oedipina and Nototriton, with descriptions of a new genus and three new species. Copeia 2000:42–70. doi:10.1643/0045-8511(2000)2000[0042:MPAORO]2.0.CO;2

    Article  Google Scholar 

  • Garoia F, Guarniero I, Grifoni D, Marzola S, Tinti F (2007) Comparative analysis of AFLPs and SSRs efficiency in resolving population genetic structure of Mediterranean Solea vulgaris. Mol Ecol 16:1377–1387. doi:10.1111/j.1365-294X.2007.03247.x

    Article  PubMed  CAS  Google Scholar 

  • Giannasi N, Thorpe RS, Malhotra A (2001) The use of amplified fragment length polymorphism in determining species trees at fine taxonomic levels: analysis of a medically important snake, Trimeresurus albolabris. Mol Ecol 10:419–426. doi:10.1046/j.1365-294x.2001.01220.x

    Article  PubMed  CAS  Google Scholar 

  • Gienapp P, Teplitsky C, Alho JS, Mills A, Merilä J (2008) Climate change and evolution: disentangling environmental and genetic responses. Mol Ecol 17:167–178. doi:10.1111/j.1365-294X.2007.03413.x

    Article  PubMed  CAS  Google Scholar 

  • Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27:857–871. doi:10.2307/2528823

    Article  Google Scholar 

  • Graham CH, Ron SR, Santos JC, Schneider CJ, Moritz C (2004) Integrating phylogenies and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evol Int J Org Evol 58:1781–1793

    Google Scholar 

  • Graham CH, Smith TB, Languy M (2005) Current and historical factors influencing patterns of species richness and turnover of birds in the Gulf of Guinea Highlands. J Biogeogr 32:1371–1384

    Google Scholar 

  • Graham CH, Moritz C, Williams SE (2006) Habitat history improves prediction of biodiversity in rainforest fauna. Proc Natl Acad Sci USA 103:632–636. doi:10.1073/pnas.0505754103

    Article  PubMed  CAS  Google Scholar 

  • Hanken J, Wake DB, Savage JM (2007) Montane salamanders from the Coast Rica-Panama border region, with descriptions of two new species of Bolitoglossa. Copeia 2007:556–565. doi:10.1643/0045-8511(2007)2007[556:MSFTCR]2.0.CO;2

    Article  Google Scholar 

  • Highton R, Peabody RB (2000) Geographic protein variation and speciation in the salamanders of the Plethodon jordani and Plethodon glutinosus complexes in the southern Appalachian Mountains with the description of four new species. In: Bruce RC, Jaeger RG, Houck LD (eds) The biology of Plethodontid salamanders. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  • Hijmans RF, Guarino L, Cruz M, Rojas E (2001) Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genet Resour Newsl 127:15–19

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi:10.1002/joc.1276

    Article  Google Scholar 

  • Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192. doi:10.2307/2992540

    Google Scholar 

  • Hoarau JY, Offmann B, D’Hont A, Risterucci AM, Roques D, Glaszmann JC, Grivet L (2001) Genetic dissection of modern sugarcane cultivar (Saccharum spp.). I. Genome mapping with AFLP markers. Theor Appl Genet 103:84–97. doi:10.1007/s001220000390

    Article  CAS  Google Scholar 

  • Huelsenbeck JP, Bollback JP (2001) Empirical and hierarchical Bayesian estimation of ancestral states. Syst Biol 50:351–366. doi:10.1080/106351501300317978

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) mrbayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755. doi:10.1093/bioinformatics/17.8.754

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427

    Google Scholar 

  • Iguchi K, Matsuura K, McNyset KM, Peterson AT, Scachetti-Pereira R, Powers KA, Vieglais DA, Wiley EO, Yodo T (2004) Predicting invasions of North American basses in Japan using native range data and a genetic. Trans Am Fish Soc 133:845–854. doi:10.1577/T03-172.1

    Article  Google Scholar 

  • Jackson ND (2005) Phylogenetic history, morphological parallelism, and speciation in a complex of Appalachian salamanders (Genus Desmognathus). Thesis, Brigham Young University

  • Jehle R, Sztatecsny M, Wolf JBW, Whitlock A, Hödl W, Burke T (2007) Genetic dissimilarity predicts paternity in the smooth newt (Lissotriton vulgaris). Biol Lett 3:526–528. doi:10.1098/rsbl.2007.0311

    Article  PubMed  Google Scholar 

  • Jensen JB, Camp CD (2003) Human exploitation of amphibians: direct and indirect impacts. In: Semlitsch RD (ed) Amphibian conservation. Smithsonian Institution, Washington DC

    Google Scholar 

  • Jensen JB, Waters C (1999) The “spring lizard” bait industry in the state of Georgia, USA. Herpetol Rev 30:20–21

    Google Scholar 

  • Jockusch EL, Wake DB (2002) Falling apart and merging: diversification of slender salamanders (Plethodontidae: Batrachoseps) in the American West. Biol J Linnaean Soc 76:361–391. doi:10.1111/j.1095-8312.2002.tb01703.x

    Article  Google Scholar 

  • Jockusch EL, Yanev EP, Wake DB (2001) Molecular phylogenetic analysis of slender salamanders, genus Batrachoseps (Amphibia: Plethodontidae), from central coastal California with descriptions of four new species. Herpetol Monogr 15:54–99. doi:10.2307/1467038

    Article  Google Scholar 

  • Jones MT, Voss SR, Ptacek MB, Weisrock DW, Tonkyn DW (2006) River drainages and phylogeography: an evolutionary significant lineage of shovel-nosed salamander (Desmognathus marmoratus) in the southern Appalachians. Mol Phylogenet Evol 38:280–287. doi:10.1016/j.ympev.2005.05.007

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kinkead KE, Abbot AG, Otis DL (2007) Genetic variation among Ambystoma breeding populations on the Savannah River site. Conserv Genet 8:281–292. doi:10.1007/s10592-006-9168-z

    Article  Google Scholar 

  • Knowles LL, Rihards CL (2005) Importance of genetic drift during Pleistocene divergence as revealed by analyses of genomic variation. Mol Ecol 14:4023–4032. doi:10.1111/j.1365-294X.2005.02711.x

    Article  PubMed  Google Scholar 

  • Kozak KH, Larson A, Bonett RM, Harmon LJ (2005) Phylogenetic analysis of ecomorphological diversification rates in dusky salamanders (Plethodontidae: Desmognathus). Evol Int J Org Evol 59:2000–2016

    Google Scholar 

  • Kozak KH, Weisrock DW, Larson A (2006a) Rapid lineage accumulation in a non-adaptive radiation: phylogenetic analysis of diversification rates in eastern North American woodland salamanders (Plethodontidae: Plethodon). Proc R Soc Lond B Biol Sci 273:539–546. doi:10.1098/rspb.2005.3326

    Article  CAS  Google Scholar 

  • Kozak KH, Blaine RA, Larson AL (2006b) Gene lineages and eastern North American palaeodrainage basins: phylogeography and speciation in salamanders of the Eurycea bislineata species complex. Mol Ecol 15:191–207. doi:10.1111/j.1365-294X.2005.02757.x

    Article  PubMed  CAS  Google Scholar 

  • Krauss SL (2000) Accurate gene diversity estimates from amplified fragment length polymorphism (AFLP) markers. Mol Ecol 9:1241–1245. doi:10.1046/j.1365-294x.2000.01001.x

    Article  PubMed  CAS  Google Scholar 

  • Larget B, Simon D (1999) Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol Biol Evol 16:750–759

    CAS  Google Scholar 

  • Larson A (1984) Neontological inferences of evolutionary pattern and process in the salamander family Plethodontidae. Evol Biol 17:119–217

    Google Scholar 

  • Larson A, Wake DB, Maxson LR, Highton R (1981) A molecular phylogenetic perspective on the origins of morphological novelties in the salamanders of the Tribe Plethodontini (Amphibia, Plethodontidae). Evol Int J Org Evol 35:405–422. doi:10.2307/2408190

    Google Scholar 

  • Losos JB, Glor RE (2003) Phylogenetic comparative methods and the geography of speciation. Trends Ecol Evol 18:220–227. doi:10.1016/S0169-5347(03)00037-5

    Article  Google Scholar 

  • Lowe A, Harris S, Ashton P (2004) Ecological genetics: design, analysis, and application. Blackwell Science Limited, Malden

    Google Scholar 

  • Lowe WH, Likens GE, McPeek MA, Buso DC (2006) Linking direct and indirect data on dispersal: isolation by slope in a headwater stream salamander. Ecology 87:334–339. doi:10.1890/05-0232

    Article  PubMed  Google Scholar 

  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99. doi:10.1111/j.1365-294X.1994.tb00109.x

    Article  PubMed  CAS  Google Scholar 

  • Mace GM, Purvis A (2008) Evolutionary biology and practical conservation: bridging a widening gap. Mol Ecol 17:9–19. doi:10.1111/j.1365-294X.2007.03455.x

    Article  PubMed  Google Scholar 

  • Makowsky R, Chesser J, Rissler LJ (2009) A striking lack of genetic diversity across the wide-ranging amphibian Grastrophryne carolinensis (Anura: Microhylidae). Genetica 135:169–183

    Article  PubMed  Google Scholar 

  • Martínez-Solano I, Jockusch EL, Wake DB (2007) Extreme population subdivision throughout a continuous range: phylogeography of Batrachoseps attenuates (Caudata: Plethodontidae) in western North America. Mol Ecol 16:4335–4355. doi:10.1111/j.1365-294X.2007.03527.x

    Article  PubMed  CAS  Google Scholar 

  • Martof BS (1953) The “spring lizard” industry, a factor in salamander distribution and genetics. Ecology 34:436–437. doi:10.2307/1930915

    Article  Google Scholar 

  • Mayden RL (1988) Vicariance biogeography, parsimony, and evolution in North American freshwater fishes. Syst Zool 37:329–355. doi:10.2307/2992197

    Article  Google Scholar 

  • McCranie JR, Espinal MR, Wilson LD (2005) New species of montane salamander of the Bolitoglossa dunni group from northern Comayagua, Honduras (Urodela: Plethodontidae). J Herpetol 39:108–112. doi:10.1670/0022-1511(2005)039[0108:NSOMSO]2.0.CO;2

    Article  Google Scholar 

  • McNyset KM (2005) Use of ecological niche modelling to predict distributions of freshwater fish species in Kansas. Ecol Freshwat Fish 14:243–255. doi:10.1111/j.1600-0633.2005.00101.x

    Article  Google Scholar 

  • McPherson JM, Jetz W (2007) Effects of species’ ecology on the accuracy of distribution models. Ecography 30:135–151

    Google Scholar 

  • Mead LS, Tilley SG, Katz LA (2001) Genetic structure of the Blue Ridge dusky salamander (Desmognathus orestes): inferences from allozymes, mitochondrial DNA, and behavior. Evol Int J Org Evol 55:2287–2302

    CAS  Google Scholar 

  • Mendelson TC, Simons JN (2006) AFLPs resolve cytonuclear discordance and increase resolution among barcheek darters (Percidae: Etheostoma: Catonotus). Mol Phylogenet Evol 41:445–453. doi:10.1016/j.ympev.2006.05.010

    Article  PubMed  CAS  Google Scholar 

  • Mock KE, Brim-Box JC, Miller MP, Downing ME, Hoeh WR (2004) Genetic diversity and divergence among freshwater mussel (Anodonta) populations in the Bonneville Basin of Utah. Mol Ecol 13:1085–1098. doi:10.1111/j.1365-294X.2004.02143.x

    Article  PubMed  CAS  Google Scholar 

  • Moritz C (2002) Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst Biol 51:238–254. doi:10.1080/10635150252899752

    Article  PubMed  Google Scholar 

  • Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Trends Ecol Evol 14:389–394. doi:10.1016/S0169-5347(99)01659-6

    Article  PubMed  Google Scholar 

  • Mueller RL, Macey JR, Jaekel M, Wake DB, Boore JL (2004) Morphological homoplasy, life history evolution, and historical biogeography of plethodontid salamanders inferred from complete mitochondrial genomes. Proc Natl Acad Sci USA 101:13820–13825. doi:10.1073/pnas.0405785101

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–292. doi:10.1086/282771

    Article  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273. doi:10.1073/pnas.76.10.5269

    Article  PubMed  CAS  Google Scholar 

  • Nicolè F, Tellier F, Vivat A, Till-Bottraud I (2007) Conservation unit status inferred for plants by combining interspecific crosses and AFLP. Conserv Genet 8:1273–1285. doi:10.1007/s10592-006-9277-8

    Article  CAS  Google Scholar 

  • Ogden R, Thorpe RS (2002) The usefulness of amplified fragment length polymorphism markers for taxon discrimination across graduated fine evolutionary levels in Caribbean Anolis lizards. Mol Ecol 11:437–445. doi:10.1046/j.0962-1083.2001.01442.x

    Article  PubMed  CAS  Google Scholar 

  • Parra-Olea G, Wake DB (2001) Extreme morphological and ecological homoplasy in tropical salamanders. Proc Natl Acad Sci USA 98:7888–7891. doi:10.1073/pnas.131203598

    Article  PubMed  CAS  Google Scholar 

  • Pertoldi C, Bijlsma R, Loeschcke V (2007) Conservation genetics in a globally changing environment: present problems, paradoxes and future challenges. Biodivers Conserv 16:4147–4163. doi:10.1007/s10531-007-9212-4

    Article  Google Scholar 

  • Phillips SJ (2008) Transferability, sample selection bias and background data in presence-only modeling: a response to Peterson et al. (2007). Ecography 31:272–278. doi:10.1111/j.0906-7590.2008.5378.x

    Article  Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175. doi:10.1111/j.0906-7590.2008.5203.x

    Article  Google Scholar 

  • Phillips SJ, Dudík M, Schapire RE (2004) A maximum entropy approach to species distribution modeling. Proceedings of the Twenty-First International Conference on Machine Learning 69:83–99

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259. doi:10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • Pizzo A, Roggero A, Palestrini C, Cervella P, DelPero M, Rolando A (2006) Genetic and morphological differentiation patterns between sister species: the case of Onthophagus taurus and Onthophagus illyricus (Coleoptera, Scarabaeidae). Biol J Linnaean Soc 89:197–211. doi:10.1111/j.1095-8312.2006.00674.x

    Article  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818. doi:10.1093/bioinformatics/14.9.817

    Article  PubMed  CAS  Google Scholar 

  • Pyron RA, Burbrink FT, Guiher TJ (2008) Claims of potential expansion throughout the US by invasive python species are contradicted by ecological niche models. PLoS One 3(8):e2931. doi:10.1371/journal.pone.0002931

    Article  PubMed  CAS  Google Scholar 

  • Raxworthy CJ, Martínez-Meyer E, Horning N, Nussbaum RA, Schneider GE, Ortega-Huerta MA, Peterson AT (2003) Predicting distributions of known and unknown reptile species in Madagascar. Nature 426:837–841. doi:10.1038/nature02205

    Article  PubMed  CAS  Google Scholar 

  • Raxworthy C, Ingram C, Rabibisoa N, Pearson R (2007) Applications of ecological niche modeling for species delimitation: a review and empirical evaluation using day geckos (Phelsuma) from Madagascar. Syst Biol 56:907–923. doi:10.1080/10635150701775111

    Article  PubMed  Google Scholar 

  • Riberon A, Miaud C, Guyetant R, Taberlet P (2004) Genetic variation in an endemic salamander, Salamandra atra, using amplified fragment length polymorphism. Mol Phylogenet Evol 31:910–914. doi:10.1016/j.ympev.2003.10.016

    Article  PubMed  CAS  Google Scholar 

  • Ricketts TH, Dinerstein E, Boucher T, Brooks TM, Butchart SHM, Hoffmann M, Lamoreux JF, Morrison J, Parr M, Pilgrim JD, Rodrigues ASL, Sechrest W, Wallace GE, Berlin K, Bielby J, Burgess ND, Church DR, Cox N, Knox D, Loucks C, Luck GW, Master LL, Moore R, Naidoo R, Ridgely R, Schatz GE, Shire G, Strand H, Wettengel W, Wikramanayake E (2005) Pinpointing and preventing imminent extinctions. Proc Natl Acad Sci USA 102:18497–18501. doi:10.1073/pnas.0509060102

    Article  PubMed  CAS  Google Scholar 

  • Rissler LJ, Apodaca JJ (2007) Adding more ecology into species delimitation: ecological niche models and phylogeography help define cryptic species in the Black salamander (Aneides flavipunctatis). Syst Biol 56:924–942. doi:10.1080/10635150701703063

    Article  PubMed  Google Scholar 

  • Rissler LJ, Taylor DR (2003) The phylogenetics of desmognathine salamander populations across the southern Appalachians. Mol Phylogenet Evol 27:197–211. doi:10.1016/S1055-7903(02)00405-0

    Article  PubMed  CAS  Google Scholar 

  • Rissler LJ, Wilbur HM, Taylor DR (2004) The influence of ecology and genetics on behavioral variation in salamander populations across the Eastern Continental Divide. Am Nat 164:201–213. doi:10.1086/422200

    Article  PubMed  Google Scholar 

  • Rissler LJ, Hijmans RJ, Graham CH, Moritz C, Wake DB (2006) Phylogeographic lineages and species comparisons in conservation analyses: a case study of California Herpetofauna. Am Nat 167:655–666. doi:10.1086/503332

    Article  PubMed  Google Scholar 

  • Rozas J, Rozas R (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174–175. doi:10.1093/bioinformatics/15.2.174

    Article  PubMed  CAS  Google Scholar 

  • Rozas J, Sánchez-DelBarrio JC, Messegyer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497. doi:10.1093/bioinformatics/btg359

    Article  PubMed  CAS  Google Scholar 

  • Schuh RT (2000) Biological systematics: principles and applications. Cornell University Press, Ithaca

    Google Scholar 

  • Seman K, Bjornstad A, Stedje B (2003) Genetic diversity and differentiation in Ethiopian populations of Phytolacca dodecandra as revealed by AFLP and RAPD analysis. Genet Resour Crop Evol 50:649–661. doi:10.1023/A:1024447404492

    Article  CAS  Google Scholar 

  • Shaffer HB, Pauly GB, Oliver JC, Trenham PC (2004) The molecular phylogenetics of endangerment: cryptic variation and historical phylogeography of the California tiger salamander, Ambystoma californiense. Mol Ecol 13:3033–3049. doi:10.1111/j.1365-294X.2004.02317.x

    Article  PubMed  CAS  Google Scholar 

  • Shaw K (2002) Conflict between nuclear and mitochondrial DNA phylogenies of a recent species radiation: what mtDNA reveals and conceals about modes of speciation in Hawaiian crickets. Proc Natl Acad Sci USA 99:16122–16127. doi:10.1073/pnas.242585899

    Article  PubMed  CAS  Google Scholar 

  • Slatkin M (1993) Isolation by distance in equilibrium and nonequilibrium populations. Evol Int J Org Evol 47:264–279. doi:10.2307/2410134

    Google Scholar 

  • Soberón J, Peterson AT (2005) Interpretation of models of fundamental ecological niche and species’ distributional areas. Biodivers Inform 2:1–10

    Google Scholar 

  • Sotiropoulos K, Eleftherakos K, Kalezic′ ML, Legakis A, Polymeni RM (2007) Genetic structure of the alpine newt, Mesotriton alpestris (Salamandridae, Caudata), in the southern limit of its distribution: implications for conservation. Biochem Syst Ecol 36:1–15

    Google Scholar 

  • Stockman AK, Bond JE (2007) Delimiting cohesion species: extreme population structuring and the role of ecological interchangeability. Mol Ecol 16:3374–3392. doi:10.1111/j.1365-294X.2007.03389.x

    Article  PubMed  CAS  Google Scholar 

  • Stockwell DRB, Peterson AT (2002) Effects of sample size on accuracy of species distribution models. Ecol Modell 148:1–13. doi:10.1016/S0304-3800(01)00388-X

    Article  Google Scholar 

  • Stokstad E (2004) Global survey documents puzzling decline of amphibians. Science 306:391. doi:10.1126/science.306.5695.391a

    Article  PubMed  CAS  Google Scholar 

  • Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786. doi:10.1126/science.1103538

    Article  PubMed  CAS  Google Scholar 

  • Stuart BL, Inger RF, Voris HK (2006) High level of cryptic species diversity revealed by sympatric lineages of Southeast Asian forest frogs. Biol Lett 2:470–474. doi:10.1098/rsbl.2006.0505

    Article  PubMed  Google Scholar 

  • Sullivan JP, Lavoue S, Arnegard ME, Hopkins CD (2004) AFLPs resolve phylogeny and reveal mitochondrial introgression within a species flock of African electric fish (Mormyroidea: Teleostei). Evol Int J Org Evol 58:825–841

    CAS  Google Scholar 

  • Swofford D (2002) paup*: phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland

    Google Scholar 

  • Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–460

    PubMed  CAS  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:597–601

    PubMed  CAS  Google Scholar 

  • Tilley SG, Mahoney MJ (1996) Patterns of genetic differentiation in salamanders of the Desmognathus ochrophaeus complex (Amphibia: Plethodontidae). Herpetol Monogr 10:1–42. doi:10.2307/1466979

    Article  Google Scholar 

  • Tilley SG, Eriksen RL, Katz LA (2008) Systematics of dusky salamanders, Desmognathus (Caudata: Plethodontidae), in the mountain and Piedmont regions of Virginia and North Carolina, USA. Zool J Linn Soc 152:115–130

    Google Scholar 

  • Titus TA, Larson A (1996) Molecular phylogenetics of desmognathan salamanders (Caudata: Plethodontidae): a reevaluation of evolution in ecology. Syst Biol 45:451–472. doi:10.2307/2413525

    Article  Google Scholar 

  • Van Cutsem P, du Jardin P, Boutte C, Beauwens T, Jacqmin S, Vekemans X (2003) Distinction between cultivated and wild chicory gene pools using AFLP markers. Theor Appl Genet 107:713–718. doi:10.1007/s00122-003-1296-y

    Article  PubMed  CAS  Google Scholar 

  • Vekemans X (2002) AFLP-SURV version 1.0. Distributed by the author. Laboratorie de Génétique et Ecologie Végétale, Université Libre de Bruxelles, Belgium

    Google Scholar 

  • Vekemans X, Beauwens T, Lemaire M, Roldan-Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11:139–151. doi:10.1046/j.0962-1083.2001.01415.x

    Article  PubMed  CAS  Google Scholar 

  • Vieites DR, Min MS, Wake DB (2007) Rapid diversification and dispersal during periods of global warming by plethodontid salamanders. Proc Natl Acad Sci USA 104:19903–19907. doi:10.1073/pnas.0705056104

    Article  PubMed  CAS  Google Scholar 

  • Voss SR, Schaffer HB (1997) Adaptive evolution via a major gene effect: paedomorphosis in the Mexican Axolotl. Proc Natl Acad Sci USA 94:14185–14189. doi:10.1073/pnas.94.25.14185

    Article  PubMed  CAS  Google Scholar 

  • Voss P, Hogers R, Bleeker M, Reijans M, Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414. doi:10.1093/nar/23.21.4407

    Article  Google Scholar 

  • Wake DB, Roth G, Wake MH (1983) On the problem of stasis in organismal evolution. J Theor Biol 101:211–224. doi:10.1016/0022-5193(83)90335-1

    Article  Google Scholar 

  • Wang Z, Baker AJ, Hill GE, Edwards SV (2003) Reconciling actual and inferred population histories in the House Finch (Carpodacus mexicanus) by the AFLP analysis. Evol Int J Org Evol 57:2852–2862

    Google Scholar 

  • Whitlock A, Sztatecsny M, Jehle R (2006) AFLPs: genetic markers for paternity studies in newts (Triturus vulgaris). Amphib-Reptil 27:126–129. doi:10.1163/156853806776052029

    Article  Google Scholar 

  • Wiens JJ, Engstrom TN, Chipinndale PT (2006) Rapid diversification, incomplete isolation, and the “speciation clock” in North American salamanders (Genus Plethodon): testing the hybrid swarm hypothesis of rapid radiation. Evol Int J Org Evol 60:2585–2603

    CAS  Google Scholar 

  • Wilcox TP, Zwickl DJ, Heath TA, Hillis DM (2002) Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support. Mol Phylogenet Evol 25:361–371. doi:10.1016/S1055-7903(02)00244-0

    Article  PubMed  CAS  Google Scholar 

  • Wilding CS, Butlin RK, Grahame J (2001) Differential gene exchange between parapatric morphs of Littorina saxatilis detected using AFLP markers. J Evol Biol 14:611–619. doi:10.1046/j.1420-9101.2001.00304.x

    Article  CAS  Google Scholar 

  • Wooten JA, Rissler LJ (2005) Geographic distribution: Desmognathus folkertsi. Herpetol Rev 36:461

    Google Scholar 

  • Wooten JA, Tolley-Jordan LR (2009) Validation of phylogenetic signals in amplified fragment length data: testing the utility and reliability in closely related taxa. BMC Res Notes 2:26. doi:10.1186/1756-0500-2-26

    Article  PubMed  CAS  Google Scholar 

  • Wright S (1931) Evolution of Mendelian populations. Genetics 16:97–159

    PubMed  CAS  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–156

    PubMed  CAS  Google Scholar 

  • Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evol Int J Org Evol 19:395–420. doi:10.2307/2406450

    Google Scholar 

  • Zhivotovsky LA (1999) Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol 8:907–913. doi:10.1046/j.1365-294x.1999.00620.x

    Article  PubMed  CAS  Google Scholar 

  • Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Dissertation, The University of Texas at Austin download URL: www.bio.utexas.edu/faculty/antisense/garli/Garli.html

Download references

Acknowledgments

This research was supported by the help and advice of many friends and colleagues. S. Eagle, W. Van Devender, A. Van Devender, M. Chadwick, S. Parker, Z. Felix, B. Sutton, D. Merritt, J. Hodgson, S. Fields, J. Humphries, J. Waldron, R. Makowsky, C. Makowsky, W. Smith, and C. Cox helped in the field. W. Holznagel, L. Tolley-Jordan, and E. Toorens provided assistance with the laboratory work and AFLP fragment analysis. P. Bradford extracted the stream distances for each locality. T. Lamb provided valuable comments that significantly improved the manuscript. All salamander research was approved by the Institutional Animal Care and Use Committee (IACUC) protocol number 05-242-3 to LJR at The University of Alabama. This research was funded by: a NSF DEB 0414033 awarded to LJR, American Museum of Natural History grant awarded to JAW, and The University of Alabama.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica A. Wooten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wooten, J.A., Camp, C.D. & Rissler, L.J. Genetic diversity in a narrowly endemic, recently described dusky salamander, Desmognathus folkertsi, from the southern Appalachian Mountains. Conserv Genet 11, 835–854 (2010). https://doi.org/10.1007/s10592-009-9916-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-009-9916-y

Keywords

Navigation