Skip to main content

Advertisement

Log in

The influence of historical and contemporary landscape variables on the spatial genetic structure of the rainbow darter (Etheostoma caeruleum) in tributaries of the upper Mississippi River

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Evaluating spatial genetic patterns is an important method to help inform management efforts for the conservation of native fishes. However, the present study demonstrates that it is vital to consider life history, distribution, and historical processes when interpreting the spatial distribution of genetic diversity. This study examined genetic variation in populations of the Rainbow Darter, Etheostoma caeruleum, in tributaries of the upper Mississippi River in northeast Iowa in order to understand the influence of landscape alteration at multiple temporal scales. The diversity and distribution of fishes in this region are influenced by historical geologic and climatic events, and recent, intensive human activities, making this an excellent site for an investigation of this type. Landscape genetic analyses of eight microsatellite loci from 14 localities detected a single genetic population. The amount of genetic diversity observed within localities and drainages was high, but the distribution of genetic variation was almost uniform across the study area. There was no evidence of population subdivision at any spatial scale. Based on what is known about the life history of the Rainbow Darter and the geological history of the region, the best explanation for these results is that historical processes had a more pronounced influence on the observed genetic variation than contemporary impacts. Specifically, the genetic signature supports a conclusion of population expansion into the region following the retreat of glacial advances during the Pleistocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allan JD (2004) Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu Rev Ecol Evol Syst 35:257–284

    Article  Google Scholar 

  • Alp M, Keller I, Westram A, Robinson CT (2012) How river structure and biological traits influence gene flow: a population genetic study of two stream invertebrates with differing dispersal abilities. Freshw Biol 57:969–981

    Article  Google Scholar 

  • Anderson WI (1998) Iowa’s geological past: three billion years of change. University of Iowa Press, Iowa City

    Google Scholar 

  • Apodaca JJ, Rissler LJ, Godwin JC (2012) Population structure and gene flow in a heavily disturbed habitat: implications for the management of the imperiled Red Hills salamander (Phaeognathus hubrichti). Conserv Genet 13:913–923

    Article  Google Scholar 

  • Austin JD, Jelks HL, Tate B, Johnson AR, Jordan F (2011) Population genetic structure and conservation genetics of threatened Okaloosa darters (Etheostoma okaloosae). Conserv Genet 12:981–989

    Article  Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  • Balkenhol N, Gugerli F, Cushman SA, Waits LP, Coulon A, Arntzen JW, Holderegger R, Wagner HH (2009) Identifying future research needs in landscape genetics: where to from here? Landsc Ecol 24:455–463

    Article  Google Scholar 

  • Becker GC (1983) Fishes of Wisconsin. The University of Wisconsin Press, Madison

    Google Scholar 

  • Beerli P (2006) Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341–345

    Article  CAS  PubMed  Google Scholar 

  • Beerli P, Felsenstein J (1999) Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. Genetics 152:763–773

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Nat Acad Sci USA 98:4563–4568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  • Berendzen PB, Simons AM, Wood RM (2003) Phylogeography of the northern hogsucker, Hypentelium nigricans (Teleostei: Cypriniformes): genetic evidence for the existence of the ancient Teays River. J Biogeogr 30:1139–1152

    Article  Google Scholar 

  • Berendzen PB, Simons AM, Wood RM, Dowling TE, Secor CL (2008) Recovering cryptic diversity and ancient drainage patterns in eastern North America: historical biogeography of the Notropis rubellus species group (Teleostei: Cypriniformes). Mol Phylogenet Evol 46:721–737

    Article  CAS  PubMed  Google Scholar 

  • Berendzen PB, Dugan JF, Gamble T (2010) Post-glacial expansion into thePaleozoic Plateau: evidence of an Ozarkian refugium for the Ozark minnow Notropis nubilus (Teleostei: Cypriniformes). J Fish Biol 77:1114–1136

    Article  CAS  PubMed  Google Scholar 

  • Bernatchez L, Wilson CC (1998) Comparative phylogeography of Nearctic and Palearctic fishes. Mol Ecol 7:431–452

    Article  Google Scholar 

  • Blum MJ, Neely DA, Harris PM, Mayden RL (2008) Molecular systematics of the cyprinid genus Campostoma (Actinopterygii: Cypriniformes): dissociation between morphological and mitochondrial differentiation. Copeia 2008:360–369

    Article  Google Scholar 

  • Bohonak AJ (2002) IBD (isolation by distance): a program for analyses of isolation by distance. J Heredity 93:153–154

    Article  CAS  Google Scholar 

  • Boutin-Ganache IM, Raposo M, Raymond M, Deschepper CF (2001) M13-tailed primers improve the readability and usability of microsatellite analyses performed with two different allele-sizing methods. BioTech 31:25–28

    Google Scholar 

  • Brown JL, Knowles LL (2012) Spatially explicit models of dynamic histories: examination of the genetic consequences of Pleistocene glaciation and recent climate change on the American Pika. Mol Ecol 21:3757–3775

    Article  PubMed  Google Scholar 

  • Cessna JF, Raesly RL, Kilian JV, Cincotta DA, Hilderbrand RH (2014) Rapid colonization of the Potomac River drainage by the Rainbow Darter (Etheostoma caeruleum) following introduction. Northeast Nat 21:1–11

    Article  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Nat Acad Sci USA 8:3166–3170

    Article  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res 4:359–361

    Article  Google Scholar 

  • Emerson KJ, Merz CR, Catchen JM, Hohenlohe PA, Cresko WA, Bradshaw WE, Holzapfel CM (2010) Resolving postglacial phylogeography using high-throughput sequencing. Proc Nat Acad Sci USA 107:16196–16200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Epps CW, Wasser SK, Keim JL, Mutayoba BM, Brashares JS (2013) Quantifying past and present connectivity illuminates a rapidly changing landscape for the African elephant. Mol Ecol 22:1574–1588

    Article  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed Central  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed Central  PubMed  Google Scholar 

  • François O, Durand E (2010) Spatially explicit Bayesian clustering models in population genetics. Mol Ecol Resour 10:773–784

    Article  PubMed  Google Scholar 

  • Frankham F (2005) Genetics and extinction. Biol Conserv 126:131–140

    Article  Google Scholar 

  • Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318

    Article  CAS  PubMed  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9. 3). Lausanne University, Switzerland. http://www2.unil.ch/popgen/softwares/120fstat.htm. Updated from Goudet (1995) FSTAT (vers. 1.2): a computer program to calculate F statistics, J Hered 86:485–486

  • Hanski I (2001) Population dynamic consequences of dispersal in local populations and in metapopulations. In: Clobert J, Danchin E, Dhondt AA, Nichols JD (eds) Dispersal. Oxford University Press, Oxford, pp 283–298

    Google Scholar 

  • Haponski AE, Bollin TL, Jedlicka MA, Stepien CA (2009) Landscape genetics patterns of the rainbow darter Etheostoma caeruleum: a catchment analysis of mitochondrial DNA sequences and nuclear microsatellites. J Fish Biol 75:2244–2268

    Article  CAS  PubMed  Google Scholar 

  • Harding JM, Burky AJ, Way CM (1998) Habitat preferences of the rainbow darter, Etheostoma caeruleum, with regard to microhabitat velocity shelters. Copeia 1998:988–997

    Article  Google Scholar 

  • Hardy ME, Grady JM, Routman J (2002) Intraspecific phylogeography of the slender madtom: the complex evolutionary history of the Central Highlands of the United States. Mol Ecol 11:2393–2403

    Article  CAS  PubMed  Google Scholar 

  • Heithaus M, Laushman R (1997) Genetic variation and conservation of stream fishes: influence of ecology, life history, and water quality. Can J Fish Aquat Sci 54:1822–1836

    Article  Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276

    Article  Google Scholar 

  • Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    Article  CAS  PubMed  Google Scholar 

  • Howe RW (1984) Zoogeography of Iowa’s Paleozoic Plateau. Proc Iowa Acad of Sci 91:32–36

    Google Scholar 

  • Howes BJ, BrownJW Gibbs HL, Herman TB, Mockford SW, Prior KA, Weatherhead PJ (2009) Directional gene flow patterns in disjunct populations of the black ratsnake (Pantheropis obsoletus) and the Blanding’s turtle (Emydoidea blandingii). Conserv Genet 10:407–417

    Article  Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    Article  PubMed Central  PubMed  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Jelks HL, Walsh SJ, Burkhead NM, Contreras-Balderas S, Diaz-Pardo E, Hendrickson DA, Lyons J, Mandrak NE, McCormick F, Nelson JS, Platania SP, Porter BA, Renaud CB, Schmitter-Soto JJ, Taylor EB, Warren ML Jr (2008) Conservation status of imperiled North American freshwater and diadromous fishes. Fisheries 33:372–407

    Article  Google Scholar 

  • Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6:13

    Article  PubMed Central  PubMed  Google Scholar 

  • Kalinowski ST, Meeuwig MH, Narum SR, Taper ML (2008) Stream trees: a statistical method for mapping genetic differences between populations of freshwater organisms to the sections of streams that connect them. Can J Fish AquatSci 65:2752–2760

    Article  Google Scholar 

  • Karr JR, Toth LA, Dudley DR (1985) Fish communities of midwestern rivers: a history of degradation. BioSci 1985:90–95

    Article  Google Scholar 

  • Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19:3038–3051

    Article  PubMed  Google Scholar 

  • Lowe JJ, Walker MJC (1997) Reconstructing quaternary environments, 2nd edn. Longman, Essex

    Google Scholar 

  • Mayden RL (1988) Vicariance biogeography, parsimony, and evolution in North American 640 freshwater fishes. Systematic Zool 37:329–355

    Article  Google Scholar 

  • McCauley DE (1991) Genetic consequences of local population extinction and recolonization. Trends Ecol Evol 6:5–8

    Article  CAS  PubMed  Google Scholar 

  • Menzel BW (1983) Agricultural management practices and the integrity of in-stream biological habitat. In: Schaller FW, Bailey GW (eds) Agricultural management and water quality. Iowa State University Press, Ames, pp 305–329

    Google Scholar 

  • Mickelson DM, Colgan PM (2004) The southern Laruentide ice sheet. In: Gillespie AR, Porter SC, Atwater BF (eds) The quaternary period in the United States, developments in quaternary science, vol 1. Elseivier, Amsterdam, pp 1–16

    Chapter  Google Scholar 

  • Narum S (2006) Beyond Bonferroni: less conservative analyses for conservation genetics. Conserv Genet 7:783–787

    Article  CAS  Google Scholar 

  • Near JT, Page LM, Mayden RL (2001) Intraspecific phylogeography of Percinaevides (Percidae: Etheostomatinae): an additional test of the central highlands pre-Pleistocene vicariance hypothesis. Mol Ecol 10:2235–2240

    Article  CAS  PubMed  Google Scholar 

  • Page LM (2000) Etheostomatinae. In: Craig JF (ed) Percid fishes: systematics, ecology, and exploitation. University of Chicago Press, Chicago, pp 225–253

    Chapter  Google Scholar 

  • Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. JHered 90:502–503

    Google Scholar 

  • Pritchard JK, Stephens M, Donnely P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ray JM, Wood RM, Simons AM (2006) Phylogeography and post-glacial colonization patterns of the rainbow darter, Etheostoma caeruleum (Teleostei: Percidae). J Biogeogr 33:1550–1558

    Article  Google Scholar 

  • Robinson JD, Simmons JW, Williams AS, Moyer GR (2013) Population structure and genetic diversity in the endangered bluemask darter (Etheostoma akatulo). Conserv Genet 14:79–92

    Article  Google Scholar 

  • Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rousset F (2008) GENEPOP’007: a complete reimplementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Schlosser IJ, Toth LA (1984) Niche relationships and population ecology of rainbow (Etheostoma caeruleum) and fantail (E. flabellare) darters in a temporally variable environment. Oikos 1984:229–238

    Article  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nature, Biotech 18:233–234

    Article  CAS  Google Scholar 

  • Segelbacher G, Cushman SA, Epperson BK, Fortin MJ, Francois O, Hardy OJ, Holderegger R, Taberlet P, Waits LP, Manel S (2010) Applications of landscape genetics in conservation biology: concepts and challenges. Conserv Genet 11:375–385

    Article  Google Scholar 

  • Smith CL (1985) The inland fishes of New York state. New York State Department of Environmental Conservation, Albany

    Google Scholar 

  • Sork VL, Waits L (2010) Contributions of landscape genetics–approaches, insights, and future potential. Mol Ecol 19:3489–3495

    Article  PubMed  Google Scholar 

  • Sterling KA, Reed DH, Noonan BP, Warren ML Jr (2012) Genetic effects of habitat fragmentation and population isolation on Ethesotoma raneyi (Percidae). Conserv Genet 13:859–872

    Article  Google Scholar 

  • Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF, Dezzani R, Delmelle E, Vierling L, Waits LP (2007) Putting the ‘landscape’in landscape genetics. Heredity 98:128–142

    Article  CAS  PubMed  Google Scholar 

  • Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP (2010) Landscape genetics: where are we now? Mol Ecol 19:3496–3514

    Article  PubMed  Google Scholar 

  • Thornbury WD (1965) Regional geomorphology of the United States. Wiley, New York

    Google Scholar 

  • Tonnis BD (2006) Microsatellite DNA markers for the rainbow darter, Etheostoma caeruleum 704 (Percidae), and their potential utility for other darter species. Mol Ecol Notes 6:230–232

    Article  CAS  Google Scholar 

  • Turner TF, Trexler JC (1998) Ecological and historical associations of gene flow in darters (Teleostei: Percidae). Evolution 52:1781–1801

    Article  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICROCHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Varvio SL, Chakraborty R, Nei M (1986) Genetic variation in subdivided populations and conservation genetics. Heredity 57:189–198

    Article  PubMed  Google Scholar 

  • Vogt GF Jr, Coon TG (1990) A comparison of the foraging behavior of two darter (Etheostoma) species. Copeia 1990:41–49

    Article  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed Central  PubMed  Google Scholar 

  • Yue GH, David L, Orban L (2007) Mutation rate and pattern of microsatellites in common carp (Cyprinus carpio L.). Genetica 129:329–331

    Article  CAS  PubMed  Google Scholar 

  • Zellmer AJ, Knowles LL (2009) Disentangling the effects of historic vs. contemporary landscape structure on population genetic divergence. Mol Ecol 18:3593–3602

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank A. Stahl, B. Stahl, K. Berge, and J. Kosmicki for assistance with the fieldwork, and K. Wilson and A. Lawin for help in the molecular laboratory. We also thank C. Calhoun, R. Kurtz, S. Harper and M. Merner for comments on the manuscript. Partial funding for this research was provided by the Iowa Department of Natural Resources Wildlife Diversity Small Grants Program and a Graduate Research Award for Student Projects, College of Humanities, Arts and Sciences, University of Northern Iowa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter B. Berendzen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, D.J., Wieman, A.C. & Berendzen, P.B. The influence of historical and contemporary landscape variables on the spatial genetic structure of the rainbow darter (Etheostoma caeruleum) in tributaries of the upper Mississippi River. Conserv Genet 16, 167–179 (2015). https://doi.org/10.1007/s10592-014-0649-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-014-0649-1

Keywords

Navigation