Skip to main content

Advertisement

Log in

Terms of Trade Shocks and Monetary Policy in India

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

Central banks in emerging market economies often grapple with understanding the monetary policy response to an inter-sectoral terms of trade shock. To address this, we develop a three sector closed economy NK-DSGE model calibrated to India. Our framework can be generalized to other emerging markets and developing economies. The model is characterized by a manufacturing sector and an agricultural sector. The agricultural sector is disaggregated into a grain and vegetable sector. The government procures grain from the grain market and stores it. We show that the procurement of grain leads to higher inflation, a change in the sectoral terms of trade, and a positive output gap because of a change in the sectoral allocation of labor. We compare the transmission of a single period positive procurement shock with a single period negative productivity shock and discuss the implications of such shocks for monetary policy setting. Our paper contributes to a growing literature on monetary policy in India and other emerging market economies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. This is for base year 2011–2012.

  2. In India, the government through the Food Corporation of India (FCI), procures and stocks food grains, a part of which is released for distribution through the Public Distribution System (PDS) network across the country.

  3. It is worth mentioning that the agriculture sector is also distorted in some way in developed countries, but such distortions may have negligible impacts on the aggregate economy because of a very small share of agriculture in GDP and employment.

  4. Basu (2011, pp. 37–38) shows how a distorted food grain market leads to high food inflation and large food grain stocks simultaneously. Anand et al. (2016) discuss the role of the government’s buffer stock demand for cereal in increasing food inflation in the Indian economy. Ramaswamy et al. (2014) also show how increasing the MSP increases open market prices and fuels food price inflation. They estimate the welfare losses generated from a rising MSP. They find that the accumulated welfare losses amount to 1.5 billion dollars to the Indian economy between 1998 and 2011.

  5. Aoki (2001) explains the transmission of inflationary pressures in an economy from a flexible price sector to sticky price sector which leads to generalized inflation.

  6. Derivations for the entire model are in Technical Appendix.

  7. For details, refer to the Technical Appendix.

  8. Variable \(\widehat{X}_{t}\), is the log-deviation from steady state and is defined as,

    $$\begin{aligned} \widehat{X}_{t}=\ln X_{t}-\ln X. \end{aligned}$$
  9. Note that for the grain sector (G) only open market output, \(Y_{\textit{OG},t}\), is consumed while the rest, \(Y_{\textit{PG},t}\), is procured by the government. The total sectoral output produced in the grain sector is defined as, \( Y_{G,t}=Y_{\textit{OG},t}+Y_{\textit{PG},t}.\)

  10. For the grain sector,

    \(N_{G,t}\equiv \int _{0}^{1}N_{G,t}(j)dj=\int _{0}^{1}\frac{Y_{G,t}(j)}{A_{G,t} }dj=\int _{0}^{1}\frac{(Y_{\textit{PG},t}(j)+Y_{\textit{OG},t}(j))}{A_{G,t}}dj =\frac{1}{A_{G,t}} \left\{ \int _{0}^{1}Y_{\textit{PG},t}(j)dj +\text {}\int _{0}^{1}Y_{\textit{OG},t}(j)dj \right\} =\frac{1}{A_{G,t}}\left\{ Y_{\textit{PG},t} + Y_{\textit{OG},t}Z_{\textit{OG},t}\right\} .\)

  11. This implies \(Z_{\textit{OG},t}=Z_{V,t}=1\) and \(Z_{M,t}=\int _{0}^{1}\left( \frac{ P_{M,t}(j)}{P_{M},t}\right) ^{-\theta }dj.\)

  12. We assume that the government in our model has complete information about the demand and supply schedules in the open market for grain. There is, however, some persistence in the amount of procurement, \(Y_{\textit{PG},t},\) undertaken by the government every year. In the calibration exercise, we assume that procurement follows an AR(1) process which we estimate from the Indian data.

  13. We justify this assumption by noting that many large farmers in India are also traders, and hence can be viewed as “farmer-traders.”

  14. Since prices cannot be negative \(\gamma \) should be greater then zero such that \(0\le \gamma \le 1.\) Imposing this restriction implies \(0\le c_{p}\le \frac{\theta -1}{\theta }.\)

  15. We assume that the inflation target is zero.

  16. See Aoki (2001, pp. 64–66).

  17. Note that in Eq. (64) the term \(E_{t}\{\Delta T_{\textit{AM},t+1}\}\) exists only in the presence of procurement i.e. \(\lambda _{c}>0 \) when \(c_{p}>0\) and \(\lambda _{c}=0\) when \(c_{p}=0.\)

  18. We require the sufficient condition, \(0\le \lambda _{c}\le 1,\) to show the following results. We first note that, \(\lambda _{c},\) is given by the steady state ratio, \(C/Y=1-\lambda _{c}\), which implies, \(0\le \lambda _{c}\le 1\). We therefore restrict the value of \(c_{p}\) such that \(0\le \lambda _{c}\le 1.\) We can show

    $$\begin{aligned} \frac{d(\frac{\left( \psi \Theta _{1}+\sigma \right) }{\left( 1-\lambda _{c}\right) })}{dc_{p}}=\frac{\left( \psi \frac{d\Theta _{1}}{dc_{p}}\right) \left( 1-\lambda _{c}\right) +\left( \frac{d\lambda _{c}}{dc_{p}}\right) \left( \psi \Theta _{1}+\sigma \right) }{\left( 1-\lambda _{c}\right) ^{2}}>0 \quad \forall \mathbf {\ }c_{p} \end{aligned}$$

    where \(\frac{\left( \psi \Theta _{1}+\sigma \right) }{\left( 1-\lambda _{c}\right) }\) is the slope of the NKPC which increases in \(c_{p}.\) Similarly, it can be shown that

    $$\begin{aligned} \frac{d(\frac{\sigma }{1-\lambda _{c}})}{dc_{p}}=\frac{\left( \frac{d\lambda _{c}}{dc_{p}}\right) \sigma }{\left( 1-\lambda _{c}\right) ^{2}}>0\mathbf {\ } \end{aligned}$$

    since \(\frac{d\lambda _{c}}{dc_{p}}>0,\) \(\forall \) \(c_{p}\), where, once again, we have imposed \(0\le \lambda _{c}\le 1\). The slope of the DIS curve is also increasing in \(c_{p}.\)

  19. We calibrate our model using Dynare Version 4.4.2.

  20. Levine et al. (2012) estimate a closed economy DSGE model for India using Bayesian estimation. They use data for real GDP, real investment, the GDP deflator, and the nominal interest rate for India from 1996:1 (i.e. first quarter)–2008:4 (i.e. last quarter). We use the estimated values for the 2-sector NK model from their paper.

  21. The household expenditure data of the NSS 68th round (2011–2012), breaks down item-wise average monthly expenditure incurred by rural and urban households (i.e., expenditures on cereals and cereal substitutes, pulses, vegetables, fruits, services, etc.). According to this round, the food expenditure share in total consumption expenditure is approximately 52.9 % in rural India and 42.6 % in urban India. For total household consumption expenditure, we exclude services as an item group since we don’t consider services in our model. Net of services, we then sum the monthly per capita expenditure of the following items: cereals and cereal substitutes, pulses and their products, vegetables, fruits, fuel and light, clothing and footwear, and durable goods. These items proxy for consumed items in the agriculture and the manufacturing sector. The items relevant to the agriculture sector are: cereals and cereal substitutes, pulses and their products, vegetables, fruits. We sum the monthly per-capita expenditures for these items, and calculate their share in total consumption for rural and urban households. Finally, we use the 2011 Census population weights of rural and urban households to obtain the parameter, \(\delta ,\) as a weighted average of rural and urban agriculture consumption expenditure. Similarly, we calculate the expenditure share on vegetables as a percentage to total expenditure on agriculture sector goods, \(\mu \).

  22. Anand and Prasad (2010) assumes persistence for a food sector shock in an AR(1) process to be 0.25. Assuming any productivity shock to the grain sector will be same for the vegetable sector, we have set the AR(1) coefficient same for both.

  23. Department of Food and Public Distribution (see http://dfpd.nic.in/). Only wheat and rice data is considered. We use the net procured goods series. To get this we subtract the amount distributed through the public distribution system (PDS) from the procured amount every year. First we take the log of this net procured goods series and then demean it to get the \(\widehat{Y}_{\textit{PG},t}\) series. On this series we estimate an AR(1) process to get \(\rho _{Y_{\textit{PG}}}=0.4\) and a standard error \(\sigma _{Y_{\textit{PG}}}=0.66.\)

  24. For production data, see https://www.rbi.org.in/Scripts/PublicationsView.aspx?id=15807.

  25. Note although the output of the grain sector, \(\widehat{Y}_{G,t}\), increases, this increase is less than the procured quantity leading to a fall in open market grain output, \(\widehat{Y}_{\textit{OG},t}\) [see Fig. 2d (row 1, columns 1 and 2)].

  26. See Taylor (1999) for a discussion of the advantages of a variety of “simple rules” over optimal interest rate rules of the following form,

    $$\begin{aligned} \widehat{R}_{t}=\widehat{r}_{t}^{n}+\phi _{\pi }\pi _{t}+\phi _{y}\widetilde{ Y}_{t}, \end{aligned}$$

    where \(\widehat{r}_{t}^{n}\) is the time varying natural rate of interest. We consider a “simple rule” as these rules are easy to implement by central banks. We also conducted a sensitivity analysis with the above optimal interest rate rule and our simple rule in Eq. (65). We find that the impact of a procurement shock on the nominal interest rate is very similar (0.0143 under Eq. (65) vs. 0.0147 with the optimal interest rate rule).

  27. We have done a sensitivity analysis for different values of \(\delta \) (i) arbitrarily setting it to be low (\(\delta =.05)\) and high (\(\delta =.70\)), and (ii) setting \(\delta ~\)equal to the food expenditure share in total consumption in other EMEs [e.g., China (0.38), Brazil (0.24), Russia (0.30)] using data from the BRICS (2015). We have looked at the impulse responses of the variables for a one period positive procurement shock. A higher/lower value of \(\delta \) does increase/decrease the value of inflation on impact, as would be expected. However, inflation increases at a decreasing rate as \(\delta \) increases.

  28. For this exercise we assume no procurement distortion i.e. \(\widehat{Y} _{\textit{PG},t}\) and \(c_{p}\) is zero.

References

  • Anand, R., Kumar, N., & Tulin V. (2016). Understanding India’s food inflation: The role of demand and supply factors. IMF Working Paper, 02/2016. Washington, DC: International Monetary Fund.

  • Anand, R., & Prasad, E. S. (2010). Optimal price indices for targeting inflation under incomplete markets. IMF Working Paper, 10/2000. Washington, DC: International Monetary Fund.

  • Aoki, K. (2001). Optimal monetary policy responses to relative price changes. Journal of Monetary Economics, 48(1), 55–80.

    Article  Google Scholar 

  • Basu, K. (2011). India’s food grain policy: An economic theory perspective. Economic & Political Weekly, Special Issue, 46(5), 37–45.

    Google Scholar 

  • Benigno, P. (2004). Optimal monetary policy in a currency area. Journal of International Economics, 63(2), 293–320.

    Article  Google Scholar 

  • BRICS (2015). BRICS Joint Statistical Publication: Brazil, Russia, India, China, South Africa. Statistics of Russia. http://www.gks.ru/free_doc/doc_2015/BRICS_ENG.pdf.

  • Calvo, G. (1983). Staggered prices in a utility maximizing framework. Journal of Monetary Economics, 12(3), 383–398.

    Article  Google Scholar 

  • De Resende, C., Dib, A., & Kichian, M. (2010). Alternative optimized monetary policy rules in multi-sector small open economies: The role of real rigidities. Working Paper, 10-9. Bank of Canada.

  • Erceg, C., & Levin, A. (2006). Optimal monetary policy with durable consumption goods. Journal of Monetary Economics, 53(7), 1341–1359.

    Article  Google Scholar 

  • Galí, J. (2008). Monetary policy, inflation, and the business cycle: An introduction to the New Keynesian Framework. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Galí, J., & Monacelli, T. (2005). Monetary policy and exchange rate volatility in a small open economy. Review of Economic Studies, 72(3), 707–734.

    Article  Google Scholar 

  • Government of India, Labour Bureau. (2013–2014). In 4th Annual Employment–Unemployment Survey Report.

  • Hove, S., Mama, A. T., & Tchana, F. T. (2015). Monetary policy and commodity terms of trade shocks in emerging market economies. Economic Modelling, 49, 53–71.

    Article  Google Scholar 

  • Huang, K. X. D., & Liu, Z. (2005). Inflation targeting: What inflation rate to target? Journal of Monetary Economics, 52(8), 1435–1462.

    Article  Google Scholar 

  • Levine, P., Vasco, G. J., Pearlman, J., & Yang, B. (2012). An estimated DSGE model of the Indian economy. In C. Ghate (Ed.), The Oxford handbook of the Indian economy (pp. 835–890). New York: Oxford University Press.

    Google Scholar 

  • NSS (National Sample Survey) 68th Round. (2011–2012). Key indicators of household consumer expenditure in India. Report No. 558 (68/1.0/2).

  • Ortega, E., & Rebei, N. (2006). The welfare implications of inflation versus price-level targeting in a two-sector, small open economy. Working Paper, 2006–2012. Bank of Canada.

  • Ramaswamy, B., Seshadri, S., & Subramanian, K. V. (2014). A framework for analysing food policy in India. Delhi Centre: Indian Statistical Institute. Mimeo.

  • Reserve Bank of India. (2014). Handbook of statistics on the Indian Economy. Mumbai: Reserve Bank of India.

    Google Scholar 

  • Reserve Bank of India. (2015). Annual Report.

  • Taylor, J. (1993). Discretion versus policy rules in practice. Carnegie–Rochester Conference Series on Public Policy, 39, 195–214.

    Article  Google Scholar 

  • Taylor, J. (1999). Monetary policy rules. Chicago, IL: University of Chicago Press.

    Book  Google Scholar 

  • Woodford, M. (2003). Interest and prices: Foundations of a theory of monetary policy. Princeton, NJ: Princeton University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sargam Gupta.

Additional information

We thank Partha Sen, Bharat Ramaswami, Serguei Maliar, Jinill Kim, Qinglai Meng, Pedro Gomis Porqueras, Jaideep Roy, seminar participants at the 2015 Computing in Economics and Finance (CEF) Conference, Taipei, the 4th Delhi Macroeconomics Workshop (ISI Delhi), the 2015 Winter School at the Delhi School of Economics, the Indian Statistical Institute—Delhi and Deakin University for helpful comments. We are grateful to the International Growth Centre for financial support related to this project. We also thank two anonymous referees, and the Editors for useful comments. The views and opinions expressed in this article are those of the authors and no confidential information accessed by Dr. Chetan Ghate during the monetary policy deliberations in the Monetary Policy Committee (MPC) meetings has been used in this article.

Appendix

Appendix

1.1 Derivation of the Demand Function of Each Variety of Good j: Eq. (11)

$$\begin{aligned}&\max _{C_{s,t}\left( j\right) }\left[ \int _{0}^{1}C_{s,t}\left( j\right) ^{ \frac{\theta -1}{\theta }}\;dj\right] ^{\frac{\theta }{\theta -1}} \text {subject to}\\&\qquad \int _{0}^{1}P_{s,t}\left( j\right) C_{s,t}\left( j\right) dj=Z_{s,t} \end{aligned}$$

for a given level of expenditure level, \(Z_{s,t}.\) The above maximization problem can be written as the following Lagrangian,

$$\begin{aligned} \mathcal {L} =\left[ \int _{0}^{1}C_{s,t}\left( j\right) ^{\frac{\theta -1}{ \theta }}\;dj\right] ^{\frac{\theta }{\theta -1}}-\lambda _{t}\left( \int _{0}^{1}P_{s,t}\left( j\right) C_{s,t}\left( j\right) dj_{1}-Z_{s,t}\right) . \end{aligned}$$

The first-order condition is given by,

$$\begin{aligned} C_{s,t}^{\frac{1}{\theta }}C_{s,t}\left( j\right) ^{-\frac{1}{\theta } }=\lambda _{t}P_{s,t}\left( j\right) \end{aligned}$$

for all \(\ j\in \left[ 0,1\right] .\) Using the above first order condition for any two varieties \(j_{1},\) \(j_{2}\) and eliminating \(\lambda _{t}\) we get,

$$\begin{aligned} C_{s,t}\left( j_{1}\right) =C_{s,t}\left( j_{2}\right) \left( \frac{ P_{s,t}\left( j_{1}\right) }{P_{s,t}\left( j_{2}\right) }\right) ^{-\theta }. \end{aligned}$$

Now substituting \(C_{s,t}\left( j_{1}\right) \) into \(\int _{0}^{1}P_{s,t} \left( j_{1}\right) C_{s,t}\left( j_{1}\right) \) \(dj_{1}=Z_{s,t}\) and putting \(\left[ \int P_{s,t}\left( j_{1}\right) ^{1-\theta }\;dj_{1} \right] ^{\frac{1}{1-\theta }}=P_{s,t}\), the aggregate price index of sector s, we get

$$\begin{aligned} C_{s,t}\left( j_{2}\right) =\left( \frac{P_{s,t}\left( j_{2}\right) }{P_{s,t} }\right) ^{-\theta }\frac{Z_{s,t}}{P_{s,t}} \end{aligned}$$

for all \(\ j_{2}\in \left[ 0,1\right] .\) Also, substituting the term, \( C_{s,t}\left( j_{1}\right) ,\) in the expression, \(\left[ \int _{0}^{1}C_{s,t} \left( j_{1}\right) ^{\frac{\theta -1}{\theta }}\;dj_{1}\right] ^{ \frac{\theta }{\theta -1}}=C_{s,t}\), we get

$$\begin{aligned} \int _{0}^{1}P_{s,t}\left( j_{2}\right) C_{s,t}\left( j_{2}\right) dj_{2}=P_{s,t}C_{s,t}=Z_{s,t}. \end{aligned}$$

Hence \(C_{s,t}\left( j\right) =\left( \frac{P_{s,t}\left( j\right) }{P_{s,t}} \right) ^{-\theta }C_{s,t}\) for all \(j\in \left[ 0,1\right] \) where \(s=\textit{OG},\) VM.

1.2 Derivation of the Demand Function for Each Sector’s Good: Eqs. (7)–(10)

The optimization exercise is to,

$$\begin{aligned} \begin{array}{c} \displaystyle \max _{\{C_{A,t},C_{M,t}\}}\frac{\left( C_{A,t}\right) ^{\delta }\left( C_{M,t}\right) ^{1-\delta }}{\delta ^{\delta }(1-\delta )^{(1-\delta )}}\; \text {subject to }\\ \displaystyle P_{A,t}C_{A,t}+P_{M,t}C_{M,t}=Z_{t}, \end{array} \end{aligned}$$

for a given level of expenditure level, \(Z_{t}.\) The above maximization problem can be written as the following Lagrangian,

$$\begin{aligned} \mathcal {L} =\frac{\left( C_{A,t}\right) ^{\delta }\left( C_{M,t}\right) ^{1-\delta }}{\delta ^{\delta }(1-\delta )^{(1-\delta )}}-\lambda _{t}\left( P_{A,t}C_{A,t}+P_{M,t}C_{M,t}-Z_{t}\right) . \end{aligned}$$

The first order conditions with respect to \(C_{A,t}\) and \(C_{M,t}\) are given by,

$$\begin{aligned} \frac{\delta \left( C_{A,t}\right) ^{\delta -1}\left( C_{M,t}\right) ^{1-\delta }}{\delta ^{\delta }(1-\delta )^{(1-\delta )}}= & {} \lambda _{t}P_{A,t} \\ \frac{(1-\delta )\left( C_{A,t}\right) ^{\delta }\left( C_{M,t}\right) ^{-\delta }}{\delta ^{\delta }(1-\delta )^{(1-\delta )}}= & {} \lambda _{t}P_{M,t} \end{aligned}$$

respectively. Eliminating \(\lambda _{t},\) we get,

$$\begin{aligned} C_{M,t}=\frac{(1-\delta )}{\delta }C_{A,t}\left( \frac{P_{M,t}}{P_{A,t}} \right) ^{-1}. \end{aligned}$$

Now substituting the term, \(C_{M,t},\) into the expression, \(\frac{\left( C_{A,t}\right) ^{\delta }\left( C_{M,t}\right) ^{1-\delta }}{\delta ^{\delta }(1-\delta )^{(1-\delta )}},\) and setting \(\left( P_{A,t}\right) ^{\delta }\left( P_{M,t}\right) ^{1-\delta }=P_{t}\), we obtain,

$$\begin{aligned} C_{A,t}=\delta \left( \frac{P_{A,t}}{P_{t}}\right) ^{-1}C_{t}. \end{aligned}$$

Put \(C_{A,t}=\delta \left( \frac{P_{A,t}}{P_{t}}\right) ^{-1}C_{t}\) in the term, \(C_{M,t}\), which gives

$$\begin{aligned} C_{M,t}=(1-\delta )\left( \frac{P_{M,t}}{P_{t}}\right) ^{-1}C_{t}. \end{aligned}$$

The above two equations can be re-written as

$$\begin{aligned} P_{A,t}C_{A,t}= & {} \delta P_{t}C_{t} \\ P_{M,t}C_{M,t}= & {} \left( 1-\delta \right) P_{t}C_{t} \end{aligned}$$

Adding the above two equations we get \( P_{A,t}C_{A,t}+P_{M,t}C_{M,t}=P_{t}C_{t}\). Hence \(Z_{t}=P_{t}C_{t}\). Similarly, maximizing \(\frac{\left( C_{\textit{OG},t}\right) ^{(1-\mu )}\left( C_{V,t}\right) ^{\mu }}{\mu ^{\mu }(1-\mu )^{(1-\mu )}}\) subject to the constraint \(P_{\textit{OG},t}C_{\textit{OG},t}+P_{V,t}C_{V,t}=Z_{A,t}\) we get Eqs. (9) and (10).

1.3 Derivation of the Euler and Labor Supply Equations ((13) and (14), respectively)

$$\begin{aligned} \max _{C_{t},N_{t},B_{t+1}}E_{0}\sum _{t=0}^{\infty }\left[ \frac{\left( \Gamma _{t}C_{t}\right) ^{1-\sigma }}{1-\sigma }-\frac{(N_{t})^{1+\psi }}{ 1+\psi }\right] \end{aligned}$$

subject to

$$\begin{aligned}&\int _{0}^{1}P_{\textit{OG},t}\left( j\right) C_{\textit{OG},t}\left( j\right) \; dj+\int _{0}^{1}P_{V,t}\left( j\right) C_{V,t}\left( j\right) \; dj+\int _{0}^{1}P_{M,t}\left( j\right) C_{M,t}\left( j\right) \; dj\\&\qquad +E_{t}\left\{ Q_{t+1}B_{t+1}\right\} = B_{t}+W_{t}N_{t}+T_{t}+Div_{t}. \end{aligned}$$

The Lagrangian for the above problem can be written as:

$$\begin{aligned} \mathcal {L}= & {} E_{0}\sum _{t=0}^{\infty }\beta ^{t}\left\{ \left[ \frac{\left( \Gamma _{t}C_{t}\right) ^{1-\sigma }}{1-\sigma }-\frac{(N_{t})^{1+\psi }}{ 1+\psi }\right] \right. \\&\left. -\,\lambda _{t}\left[ P_{t}C_{t}+E_{t}\left\{ Q_{t+1}B_{t+1}\right\} -B_{t}-W_{t}N_{t}-T_{t}-Div_{t}\right] \right\} . \end{aligned}$$

The first order conditions for \(C_{t}\), \(N_{t}\) and \(B_{t+1}\) are given by:

$$\begin{aligned}&\displaystyle \frac{\partial \mathcal {L} }{\partial C_{t}} =\left( \Gamma _{t})^{1-\sigma }(C_{t}\right) ^{-\sigma }-\lambda _{t}P_{t}=0 \\&\displaystyle \frac{\partial \mathcal {L} }{\partial N_{t}} =-(N_{t})^{\psi }+\lambda _{t}W_{t}=0 \\&\displaystyle \frac{\partial \mathcal {L} }{\partial B_{t+1}} =-\beta ^{t}\lambda _{t}E_{t}\{Q_{t,t+1}\}+\beta ^{t+1}E_{t}\{\lambda _{t+1}\}=0, \end{aligned}$$

respectively. Using the first two conditions we get the labor supply Eq. (14), and using the first and the last condition we get the Euler equation (13). In the Euler equation, \(R_{t}=\frac{1}{E_{t}\{Q_{t,t+1}\}}.\)

1.4 Derivation of the Price Setting Equation: The Grain Sector Equation (27)

The optimization problem is given by,

$$\begin{aligned} \max _{P_{\textit{OG},t}\left( j\right) }\{P_{\textit{OG},t}\left( j\right) [Y_{\textit{OG},t}\left( j\right) +Y_{\textit{PG},t}]-\textit{MC}_{G,t}[Y_{\textit{OG},t}\left( j\right) +Y_{\textit{PG},t}]\}\; \end{aligned}$$

subject to the demand constraint

$$\begin{aligned} Y_{\textit{OG},t}\left( j\right) =\left( \frac{P_{\textit{OG},t}\left( j\right) }{P_{\textit{OG},t}} \right) ^{-\theta }Y_{\textit{OG},t}. \end{aligned}$$

The first order condition is given by:

$$\begin{aligned}&Y_{\textit{OG},t}\left( j\right) +Y_{\textit{PG},t}+P_{\textit{OG},t}\left( j\right) \frac{\partial Y_{\textit{OG},t}\left( j\right) }{\partial P_{\textit{OG},t}\left( j\right) }-\textit{MC}_{G,t}\frac{ \partial Y_{\textit{OG},t}\left( j\right) }{\partial P_{\textit{OG},t}\left( j\right) }=0.\\&\quad \text {Now }\frac{\partial Y_{\textit{OG},t}\left( j\right) }{\partial P_{\textit{OG},t}\left( j\right) } = -\,\theta \left( \frac{P_{\textit{OG},t}\left( j\right) }{P_{\textit{OG},t}} \right) ^{-\theta }\frac{1}{P_{\textit{OG},t}\left( j\right) }Y_{\textit{OG},t} =-\theta \frac{Y_{\textit{OG},t}\left( j\right) }{P_{\textit{OG},t}\left( j\right) } \end{aligned}$$

Simplifying we get,

$$\begin{aligned}&\displaystyle Y_{\textit{OG},t}\left( j\right) +Y_{\textit{PG},t}-\theta Y_{\textit{OG},t}\left( j\right) +\theta \textit{MC}_{G,t}\frac{Y_{\textit{OG},t}\left( j\right) }{P_{\textit{OG},t}\left( j\right) }=0,\\&\displaystyle \quad P_{\textit{OG},t}\left( j\right) \left( \left( 1-\theta \right) Y_{\textit{OG},t}\left( j\right) +Y_{\textit{PG},t}\right) =-\theta \textit{MC}_{G,t}Y_{\textit{OG},t}\left( j\right) ,\\&\displaystyle \quad P_{\textit{OG},t}\left( j\right) =\frac{\theta \textit{MC}_{G,t}}{\theta -1-\frac{Y_{\textit{PG},t}}{ Y_{\textit{OG},t}\left( j\right) }}. \end{aligned}$$

Similarly one can solve for the price setting equation in the vegetable sector as given in Eq. (28).

1.5 Derivation of the Price Setting Equation: Manufacturing Sector Equations (29) and (36)

The optimization problem is given by,

$$\begin{aligned} \max _{P_{M,t}^{*}\left( j\right) }E_{t}\sum _{k=0}^{\infty }\alpha _{M}^{k}Q_{t,t+k}[P_{M,t}^{*}\left( j\right) Y_{M,t+k}\left( j\right) -\textit{MC}_{M,t+k}Y_{M,t+k}\left( j\right) ]\; \end{aligned}$$

subject to the demand constraint

$$\begin{aligned} Y_{M,t+k}\left( j\right) =\left( \frac{P_{M,t}^{*}\left( j\right) }{ P_{M,t+k}}\right) ^{-\theta }Y_{M,t+k}. \end{aligned}$$

The first order condition is given by:

$$\begin{aligned}&E_{t}\sum _{k=0}^{\infty }\alpha _{M}^{k}Q_{t,t+k}\left[ Y_{M,t+k}\left( j\right) +P_{M,t}^{*}\left( j\right) \frac{\partial Y_{M,t+k}\left( j\right) }{\partial P_{M,t}^{*}\left( j\right) }-\textit{MC}_{M,t+k}\frac{ \partial Y_{M,t+k}\left( j\right) }{\partial P_{M,t}^{*}\left( j\right) } \right] =0\\&\quad \text {Now }\frac{\partial Y_{M,t+k}\left( j\right) }{\partial P_{M,t}^{*}\left( j\right) } =-\theta \left( \frac{P_{M,t}^{*}\left( j\right) }{ P_{M,t+k}}\right) ^{-\theta }\frac{1}{P_{M,t}^{*}\left( j\right) } Y_{M,t+k} =-\theta \frac{Y_{M,t+k}\left( j\right) }{P_{M,t}^{*}\left( j\right) }. \end{aligned}$$

Simplifying we get,

$$\begin{aligned}&\displaystyle E_{t}\sum _{k=0}^{\infty }\alpha _{M}^{k}Q_{t,t+k}\left[ Y_{M,t+k}\left( j\right) -\theta Y_{M,t+k}\left( j\right) +\theta \textit{MC}_{M,t+k}\frac{ Y_{M,t+k}\left( j\right) }{P_{M,t}^{*}\left( j\right) }\right] =0,\\&\displaystyle P_{M,t}^{*}\left( j\right) E_{t}\sum _{k=0}^{\infty }\alpha _{M}^{k}Q_{t,t+k}\left( 1-\theta \right) Y_{M,t+k}\left( j\right) =-E_{t}\sum _{k=0}^{\infty }\left( \beta \alpha _{M}\right) ^{t}\theta \textit{MC}_{M,t+k}Y_{M,t+k}\left( j\right) ,\\&\displaystyle P_{M,t}^{*}(j)=\frac{\theta }{\theta -1}\frac{E_{t}\sum _{k=0}^{\infty }\alpha _{M}^{k}Q_{t,t+k}Y_{M,t+k}(j)\textit{MC}_{M,t+k}}{E_{t}\sum _{k=0}^{\infty }\alpha _{M}^{k}Q_{t,t+k}Y_{M,t+k}(j)}. \end{aligned}$$

We know that

$$\begin{aligned} P_{M,t}\equiv \left( \int _{0}^{1}P_{M,t}(j)^{1-\theta }dj\right) ^{\frac{1}{ 1-\theta }}, \end{aligned}$$

is the aggregate price index of this sector. Since demand for each variety of goods in this sector is symmetric and all firms revise their prices with a common maximization problem we can drop the \(^{\prime }j^{\prime }\) so that \(P_{M,t}^{*}\left( j\right) =P_{M,t}\) for all j. For all the firms who do not get to choose their prices \(P_{M,t}\left( j\right) =P_{M,t-1}\left( j\right) .\) Hence, the aggregate price index can be written as

$$\begin{aligned} P_{M,t}^{1-\theta }=\int _{0}^{1}P_{M,t}\left( j\right) ^{1-\theta }dj=(1-\alpha _{M})(P_{M,t}^{*})^{1-\theta }+\alpha _{M}\int _{0}^{1}P_{M,t-1}\left( j\right) ^{1-\theta }dj. \end{aligned}$$

Note that the expression, \(\alpha _{M}\int _{0}^{1}P_{M,t-1}\left( j\right) ^{1-\theta }dj,\) is simply a subset of prices in \(t-1\), with each price appearing in the period t distribution of unchanged prices with the same relative frequency as in the period \(t-1\) price distribution (Woodford 2003, Chap. 3). Therefore,

$$\begin{aligned} P_{M,t}=\left[ (1-\alpha _{M})(P_{M,t}^{*})^{1-\theta }+\alpha _{M}(P_{M,t-1})^{1-\theta }\right] ^{\frac{1}{\left( 1-\theta \right) }}. \end{aligned}$$

1.6 Market Clearing: Derivation for Eq. (35)

Equation (34) can be re-written as,

$$\begin{aligned} Y_{t}= & {} C_{t}+\frac{P_{\textit{OG},t}}{P_{t}}Y_{\textit{PG},t} \\= & {} C_{t}+\frac{P_{\textit{OG},t}}{P_{A,t}}\frac{P_{A,t}}{P_{t}}Y_{\textit{PG},t} \\= & {} C_{t}+\frac{P_{\textit{OG},t}}{\left( P_{\textit{OG},t}\right) ^{1-\mu }\left( P_{V,t}\right) ^{\mu }}\frac{P_{A,t}}{\left( P_{A,t}\right) ^{\delta }\left( P_{M,t}\right) ^{1-\delta }}Y_{\textit{PG},t} \\= & {} C_{t}+\left( T_{\textit{OGV},t}\right) ^{\mu }\left( T_{\textit{AM},t}\right) ^{(1-\delta )}Y_{\textit{PG},t}. \end{aligned}$$

1.7 Derivation of Steady States: Sect. 3.2

Using the fact that \(Q_{t,t+k}=\beta ^{k}\left( \frac{\Gamma _{t+1}}{\Gamma _{t}}\right) ^{1-\sigma }\left( \frac{C_{t+1}}{C_{t}}\right) ^{-\sigma }\left( \frac{P_{t}}{P_{t+1}}\right) \), in the steady state \(Q_{t,t+k}=\beta ^{k}\). Thus Eqs. (29) and (31) in the steady state can be written as,

$$\begin{aligned} P_{M}^{*} =\frac{\theta }{\theta -1}\frac{E_{t}\mathop {\displaystyle \sum }\limits _{t=0}^{\infty }(\beta \alpha _{M})^{t}Y_{M}{} \textit{MC}_{M}}{E_{t}\mathop {\displaystyle \sum }\limits _{t=0}^{\infty }(\beta \alpha _{M})^{t}Y_{M}}, \quad P_{M}^{*} =\frac{\theta }{\theta -1}{} \textit{MC}_{M}, \end{aligned}$$

and

$$\begin{aligned} (P_{M})^{1-\theta }=\alpha _{M}\left( P_{M}\right) ^{1-\theta }+(1-\alpha _{M})\left( P_{M}^{*}\right) ^{1-\theta }\;\text {respectively.} \end{aligned}$$

The above equation implies,

$$\begin{aligned} P_{M}^{*} = P_{M} = \frac{\theta }{\theta -1}{} \textit{MC}_{M}. \end{aligned}$$

Similarly considering the price setting equation in the grain sector,

$$\begin{aligned} P_{\textit{OG}}=\frac{\theta \left( 1-c_{p}\right) }{\left( \theta -1\right) \left( 1-c_{p}\right) -c_{p}}{} \textit{MC}_{G},\quad \text { where }c_{p}=\frac{Y_{\textit{PG}}}{Y_{G}}, \end{aligned}$$

and in the vegetable sector,

$$\begin{aligned} P_{V}=\frac{\theta }{\theta -1}{} \textit{MC}_{V}. \end{aligned}$$

The aggregate price index at the steady state is:

$$\begin{aligned} P=(P_{\textit{OG}})^{(1-\mu )\delta }\left( P_{V}\right) ^{\mu \delta }\left( P_{M}\right) ^{1-\delta }. \end{aligned}$$

Using Eq. (22), \(\textit{MC}_{s}=W\) for \(s=G,\) VM,  as \(A_{s}=1\). Substituting these values in the above aggregate price index we get,

$$\begin{aligned} P= & {} \left( \frac{\left( \theta -1\right) \left( 1-c_{p}\right) }{\left( \theta -1\right) \left( 1-c_{p}\right) -c_{p}}\right) ^{(1-\mu )\delta } \frac{\theta }{\theta -1}W. \\ P= & {} \gamma ^{-(1-\mu )\delta }\frac{\theta }{\theta -1}W\quad \text { where}\; \gamma =\frac{\left( \theta -1\right) \left( 1-c_{p}\right) -c_{p}}{\left( \theta -1\right) \left( 1-c_{p}\right) }. \end{aligned}$$

Since, \(P_{M}=P_{V}=\frac{\theta }{\theta -1}W\) and \(P_{\textit{OG}}=\frac{\theta \left( 1-c_{p}\right) }{\left( \theta -1\right) \left( 1-c_{p}\right) -c_{p}} W,\)

$$\begin{aligned} \frac{P_{V}}{P} = \frac{P_{M}}{P}=\gamma ^{(1-\mu )\delta }\;\text {and}\;\frac{P_{\textit{OG}}}{P} = \gamma ^{(1-\mu )\delta -1}. \end{aligned}$$

Now from the demand functions,

$$\begin{aligned}&\displaystyle \frac{C_{\textit{OG}}}{C} =\frac{(1-\mu )\delta P}{P_{\textit{OG}}} = (1-\mu )\delta \gamma ^{-\delta \left( 1-\mu \right) +1}\\&\displaystyle \frac{C_{V}}{C} =\frac{\mu \delta P}{P_{V}} = \mu \delta \gamma ^{-\delta \left( 1-\mu \right) },\;\text {and,} \\&\displaystyle \frac{C_{M}}{C} =\frac{(1-\delta )P}{P_{M}} = \left( 1-\delta \right) \gamma ^{-\delta \left( 1-\mu \right) }. \end{aligned}$$

We can re-write the steady state labor supply Eq. (36) in the steady state as,

$$\begin{aligned} N= & {} N_{\textit{OG}}+N_{\textit{PG}}+N_{V}+N_{M} \\= & {} \frac{Y_{\textit{OG}}}{A_{G}}+\frac{Y_{\textit{PG}}}{A_{G}}+\frac{Y_{V}}{A_{V}}+\frac{Y_{M} }{A_{M}} \\= & {} C_{\textit{OG}}+C_{V}+C_{M}+Y_{\textit{PG}}\;\;\text {(Goods Market Equilibrium).} \end{aligned}$$

Using the above values from the steady state consumption demands,

$$\begin{aligned} N=\gamma ^{-\delta (1-\mu )}\left[ 1+\left( \gamma -1\right) (1-\mu )\delta \right] C+Y_{\textit{PG}} \end{aligned}$$

1.8 Derivation of the Log-Linearized Model: Eqs. (39), (40), (41a), (36), (47) and (51) in Sect. 3.3

Equation (39): Using a first order Taylor approximation in Eq. (13) yields,

$$\begin{aligned} E_{t}\left\{ \begin{array}{l} \beta R+\beta R\left( \frac{R_{t+1}-R}{R}\right) +\left( 1-\sigma \right) \beta R\left( \frac{\Gamma _{t+1}-\Gamma }{\Gamma }\right) \\ -\,\left( 1-\sigma \right) \beta R\left( \frac{\Gamma _{t}-\Gamma }{\Gamma } \right) -\sigma \beta R\left( \frac{C_{t+1}-C}{C}\right) +\sigma \beta R\left( \frac{C_{t}-C}{C}\right) \\ +\,\beta R\left( \frac{C_{t}-C}{C}\right) +\beta R\left( \frac{P_{t}-P}{P} \right) -\beta R\left( \frac{P_{t+1}-P}{P}\right) \end{array} \right\} \approx 1. \end{aligned}$$

Now for variable \(X_{t,}\frac{X_{t}-X}{X}\approx \ln \left( X_{t}\right) -\ln \left( X\right) \approx \widehat{X}_{t}\). Using the steady state value of Euler Equation, \(\beta R=1,\) we get

$$\begin{aligned} E_{t}\left\{ \widehat{R}_{t}+\left( 1-\sigma \right) \widehat{\Gamma } _{t+1}-\left( 1-\sigma \right) \widehat{\Gamma }_{t}-\sigma \widehat{C} _{t+1}+\sigma \widehat{C}_{t}+\widehat{P}_{t}-\widehat{P}_{t+1}\right\} \approx 0. \end{aligned}$$

Re-arranging terms and using \(\widehat{P}_{t+1}-\widehat{P}_{t}=\pi _{t+1},\) we get

$$\begin{aligned} \widehat{C}_{t}=E_{t}\{\widehat{C}_{t+1}\}-\frac{1}{\sigma }[(\widehat{R} _{t}-E_{t}\{\pi _{t+1}\})+(1-\sigma )E_{t}\{\Delta \widehat{\Gamma } _{t+1}\}]. \end{aligned}$$

Equation (40): Using a first order Taylor approximation in Eq. (14), we have

$$\begin{aligned}&\frac{N^{\psi }}{\Gamma ^{1-\sigma }C^{-\sigma }}+\psi \frac{N^{\psi }}{ \Gamma ^{1-\sigma }C^{-\sigma }}\left( \frac{N_{t+1}-N}{N}\right) \\&\qquad -\left( 1-\sigma \right) \frac{N^{\psi }}{\Gamma ^{1-\sigma }C^{-\sigma }}\left( \frac{\Gamma _{t}-\Gamma }{\Gamma }\right) +\sigma \frac{N^{\psi }}{\Gamma ^{1-\sigma }C^{-\sigma }}\left( \frac{C_{t}-C}{C}\right) \\&\quad \approx \frac{W}{P}+\frac{W}{P}\left( \frac{W_{t}-W}{W}\right) -\frac{W}{P} \left( \frac{P_{t}-P}{P}\right) . \end{aligned}$$

This implies that,

$$\begin{aligned} \widehat{W}_{t}-\widehat{P}_{t}=\psi \widehat{N}_{t}+\sigma \widehat{C} _{t}-(1-\sigma )\widehat{\Gamma }_{t} \end{aligned}$$

Equation (41a): Using a first order Taylor approximation of Eq. (23a), we get

$$\begin{aligned}&\textit{mc}_{G}+\textit{mc}_{G}\left( \frac{\textit{mc}_{G,t}-\textit{mc}_{G}}{\textit{mc}_{G}}\right) \approx \frac{1}{ A_{G}}\frac{W}{P}\left( T_{\textit{AM}}\right) ^{-\left( 1-\delta \right) }\left( T_{\textit{OGV}}\right) ^{-\mu }\\&\qquad -\frac{1}{A_{G}}\frac{W}{P}\left( T_{\textit{AM}}\right) ^{-\left( 1-\delta \right) }\left( T_{\textit{OGV}}\right) ^{-\mu }\\&\qquad \left[ \left( \frac{A_{G,t}-A_{G}}{A_{G}}\right) +\left( \frac{W_{t}-W}{W} \right) -\left( \frac{P_{t}-P}{P}\right) \right. \\&\qquad \quad \left. -\left( 1-\delta \right) \left( \frac{T_{\textit{AM},t}-T_{\textit{AM}}}{T_{AM}}\right) -\mu \left( \frac{T_{\textit{OG},V,t}-T_{\textit{OG},V}}{ T_{\textit{OG},V}}\right) \right] . \end{aligned}$$

Simplifying the above expression using the steady state expression, \(\textit{mc}_{G}=\frac{1}{A_{G}}\frac{W}{P}\left( T_{\textit{AM}}\right) ^{-\left( 1-\delta \right) }\left( T_{\textit{OGV}}\right) ^{-\mu },\) we get

$$\begin{aligned} \widehat{mc}_{G,t}=\widehat{W}_{t}-\widehat{P}_{t}-\widehat{A} _{G,t}-(1-\delta )\widehat{T}_{\textit{AM},t}-\mu \widehat{T}_{\textit{OGV},t}. \end{aligned}$$

We can derive (41b) and (41c) in a similar way.

The log-linearized sectoral employment equations can be obtained by taking a first order Taylor approximation of Eq. (26) and noting that \(N_{G,t}=\frac{1}{A_{G,t}}\left\{ Y_{\textit{PG},t}+ Y_{\textit{OG},t}Z_{\textit{OG},t}\right\} ,\) where a first order approximation to the dispersion term, \(\widehat{Z}_{s,t}\approx 0\) (for details see Galí 2008, Chap. 3).

Note that:

$$\begin{aligned} \frac{P_{t}}{P_{A,t}}= & {} \frac{\left( P_{A,t}\right) ^{\delta }\left( P_{M,t}\right) ^{1-\delta }}{P_{A,t}}=\left( \frac{P_{A,t}}{P_{M,t}}\right) ^{-(1-\delta )}=\left( T_{\textit{AM},t}\right) ^{-(1-\delta )} \\ \frac{P_{t}}{P_{M,t}}= & {} \frac{\left( P_{A,t}\right) ^{\delta }\left( P_{M,t}\right) ^{1-\delta }}{P_{M,t}}=\left( \frac{P_{A,t}}{P_{M,t}}\right) ^{\delta }=\left( T_{\textit{AM},t}\right) ^{\delta } \\ \frac{P_{A,t}}{P_{\textit{OG},t}}= & {} \frac{\left( P_{\textit{OG},t}\right) ^{1-\mu }\left( P_{V,t}\right) ^{\mu }}{P_{\textit{OG},t}}=\left( \frac{P_{\textit{OG},t}}{P_{V,t}}\right) ^{-\mu }=\left( T_{\textit{OGV},t}\right) ^{-\mu } \\ \frac{P_{A,t}}{P_{V,t}}= & {} \frac{\left( P_{\textit{OG},t}\right) ^{1-\mu }\left( P_{V,t}\right) ^{\mu }}{P_{V,t}}=\left( \frac{P_{\textit{OG},t}}{P_{V,t}}\right) ^{1-\mu }=\left( T_{\textit{OGV},t}\right) ^{1-\mu }. \end{aligned}$$

We use the above four equations to re-write the demand functions \(C_{\textit{OG},t},\) \(C_{M,t},\) \(C_{V,t}\) in terms of \(C_{t}\) and the terms of trade terms \( \left( T_{\textit{AM},t} \mathrm{and} T_{\textit{OGV},t}\right)\). Using the goods market equilibrium and the demand functions it is easy to derive Eqs. (43a)–(43c) using a first order Taylor’s approximation. Log linearization of the aggregate goods market clearing Eq. (35), gives us,

$$\begin{aligned} Y+Y\frac{\left( Y_{t}-Y\right) }{Y}\approx & {} C+\left( T_{\textit{OGV}}\right) ^{\mu }\left( T_{\textit{AM}}\right) ^{1-\delta }Y_{\textit{PG}}+\frac{\left( C_{t}-C\right) }{C}C \\&+\,\mu \left( T_{\textit{OGV}}\right) ^{\mu -1}\left( T_{\textit{AM}}\right) ^{1-\delta }Y_{\textit{PG}} \frac{\left( T_{\textit{OGV},t}-T_{\textit{OGV}}\right) }{T_{\textit{OGV}}}T_{OGV} \\&+\left( 1-\delta \right) \left( T_{\textit{OGV}}\right) ^{\mu }\left( T_{\textit{AM}}\right) ^{-\delta }Y_{\textit{PG}}\frac{\left( T_{\textit{AM},t}-T_{\textit{AM}}\right) }{T_{\textit{AM}}}T_{AM} \\&+\left( T_{\textit{OGV}}\right) ^{\mu }\left( T_{\textit{AM}}\right) ^{1-\delta }\frac{ \left( Y_{\textit{PG},t}-Y_{\textit{PG}}\right) }{Y_{\textit{PG}}}Y_{PG}\\ \widehat{Y}_{t}= & {} \frac{C}{Y}\widehat{C}_{t}+\frac{\left( T_{\textit{OGV}}\right) ^{\mu }\left( T_{\textit{AM}}\right) ^{1-\delta }Y_{\textit{PG}}}{Y}\left[ \mu \widehat{T} _{\textit{OGV},t}+\left( 1-\delta \right) \widehat{T}_{\textit{AM},t}+\widehat{Y}_{\textit{PG},t}\right] \end{aligned}$$

Note

$$\begin{aligned} \frac{\left( T_{\textit{OGV}}\right) ^{\mu }\left( T_{\textit{AM}}\right) ^{1-\delta }Y_{\textit{PG}}}{Y }=\frac{\gamma ^{-\mu }\gamma ^{-\left( 1-\mu \right) \left( 1-\delta \right) }}{Y}Y_{\textit{PG}}=\gamma ^{\left[ \delta (1-\mu )-1\right] }c_{p}s_{g}=\lambda _{c} \end{aligned}$$

and

$$\begin{aligned} \frac{C}{Y}=1-\lambda _{c}. \end{aligned}$$

Therefore,

$$\begin{aligned} \widehat{Y}_{t}=(1-\lambda _{c})\widehat{C}_{t}+\lambda _{c}\left[ \mu \widehat{T}_{\textit{OGV},t}+\left( 1-\delta \right) \widehat{T}_{\textit{AM},t}+\widehat{Y} _{\textit{PG},t}\right] . \end{aligned}$$

Equation (36) can be written as,

$$\begin{aligned} N_{t}= & {} N_{\textit{OG},t}+N_{\textit{PG},t}+N_{V,t}+N_{M,t}, \\ N_{t}= & {} \frac{Y_{\textit{OG},t}}{A_{G}}+\frac{Y_{\textit{PG},t}}{A_{G}}+\frac{Y_{V,t}}{A_{V,t} }+\frac{Y_{M,t}Z_{M,t}}{A_{M,t}}. \end{aligned}$$

Log linearizing equation (36), we get

$$\begin{aligned}&N+N\left( \frac{N_{t}-N}{N}\right) \\&\quad \approx \frac{Y_{\textit{OG}}}{A_{G}}+\frac{ Y_{\textit{PG}}}{A_{G}}+\frac{Y_{V}}{A_{V}}+\frac{Y_{M}}{A_{M}}+\frac{Y_{\textit{OG}}}{A_{G,t}} \left[ \left( \frac{Y_{\textit{OG},t}-Y_{\textit{OG}}}{Y_{OG}}\right) -\left( \frac{ A_{G,t}-A_{G}}{A_{G}}\right) \right] \\&\qquad +\,\frac{Y_{\textit{PG}}}{A_{G,t}}\left[ \left( \frac{Y_{\textit{PG},t}-Y_{\textit{PG}}}{Y_{PG}}\right) -\left( \frac{A_{G,t}-A_{G}}{A_{G}}\right) \right] \\&\qquad +\,\frac{Y_{V}}{A_{V}}\left[ \left( \frac{Y_{V,t}-Y_{V}}{Y_{V}}\right) -\left( \frac{A_{V,t}-A_{V}}{A_{V}}\right) \right] \\&\qquad +\,\frac{Y_{M}Z_{M}}{A_{M,t}}\left[ \left( \frac{Y_{M,t}-Y_{M}}{Y_{M}} \right) +\left( \frac{Z_{M,t}-Z_{M}}{Z_{M}}\right) -\left( \frac{ A_{M,t}-A_{M}}{A_{M}}\right) \right] . \end{aligned}$$

Using \(Z_{M}=1\) and \(\widehat{Z}_{M,t}\approx 0\) (as shown in Galí 2008), we get

$$\begin{aligned} N\widehat{N}_{t}= & {} Y_{\textit{OG}}\left( \widehat{Y}_{\textit{OG},t}-\widehat{A}_{G,t}\right) +Y_{\textit{PG}}\left( \widehat{Y}_{\textit{PG},t}-\widehat{A}_{G,t}\right) +Y_{V}\left( \widehat{Y}_{V,t}-\widehat{A}_{V,t}\right) \\&+\,Y_{M}\left( \widehat{Y}_{M,t}- \widehat{A}_{M,t}\right) \\ N\widehat{N}_{t}= & {} C_{\textit{OG}}\left( \widehat{C}_{\textit{OG},t}-\widehat{A}_{G,t}\right) +Y_{\textit{PG}}\left( \widehat{Y}_{\textit{PG},t}-\widehat{A}_{G,t}\right) \\&+\,C_{V}\left( \widehat{C}_{V,t}-\widehat{A}_{V,t}\right) +C_{M}\left( \widehat{C}_{M,t}- \widehat{A}_{M,t}\right) . \end{aligned}$$

Using steady state Eqs. (37a)–(37b) in Sect. 3.2, we get

$$\begin{aligned} N\widehat{N}_{t}= & {} \gamma ^{-\delta \left( 1-\mu \right) }\left[ (1-\mu )(\gamma -1)\delta \left( \widehat{C}_{\textit{OG},t}-\widehat{A}_{G,t}\right) +\mu \delta \left( \widehat{C}_{V,t}-\widehat{A}_{V,t}\right) \right. \\&\left. +\,(1-\delta )\left( \widehat{C}_{M,t}-\widehat{A}_{M,t}\right) \right] C +Y_{\textit{PG}}\left( \widehat{Y}_{\textit{PG},t}-\widehat{A}_{G,t}\right) \\ N\widehat{N}_{t}= & {} \gamma ^{-\delta \left( 1-\mu \right) }\left[ \widehat{C} _{t}-\widehat{A}_{t}+(1-\mu )(\gamma -1)\delta \left( \widehat{Y}_{\textit{OG},t}- \widehat{A}_{G,t}\right) \right] C\\&+Y_{\textit{PG}}\left( \widehat{Y}_{\textit{PG},t}-\widehat{A}_{G,t}\right) \\ \text {where}\;\widehat{C}_{t}= & {} (1-\mu )\delta \widehat{C}_{\textit{OG},t}+\mu \delta \widehat{C}_{V,t}+(1-\delta )\widehat{C}_{M,t} \\ \widehat{A}_{t}= & {} (1-\mu )\delta \widehat{A}_{G,t}+\mu \delta \widehat{A} _{V,t}+(1-\delta )\widehat{A}_{M,t}. \end{aligned}$$

Using Eq. (38),

$$\begin{aligned} \widehat{N}_{t}=\frac{\gamma ^{-\delta \left( 1-\mu \right) }\left[ \widehat{C}_{t}-\widehat{A}_{t}+(1-\mu )(\gamma -1)\delta \left( \widehat{Y}_{\textit{OG},t}- \widehat{A}_{G,t}\right) \right] C+Y_{\textit{PG}}\left( \widehat{Y}_{\textit{PG},t}-\widehat{A}_{G,t}\right) }{\gamma ^{-\delta \left( 1-\mu \right) }\left[ 1+(1-\mu )(\gamma -1)\delta \right] C+Y_{\textit{PG}}}. \end{aligned}$$

Using (35) at the steady state, \(Y=C+\frac{P_{\textit{OG}}}{P} Y_{\textit{PG}},\)

$$\begin{aligned} \frac{Y_{\textit{PG}}}{C}= & {} \frac{Y_{\textit{PG}}}{Y-\gamma ^{\left[ \delta \left( 1-\mu \right) -1\right] }Y_{\textit{PG}}}=\frac{\frac{Y_{\textit{PG}}}{Y_{G}}}{\frac{Y-\gamma ^{\left[ \delta \left( 1-\mu \right) -1\right] }Y_{\textit{PG}}}{Y_{G}}} \\= & {} \frac{c_{p}s_{g}}{1-\gamma ^{\left[ \delta \left( 1-\mu \right) -1\right] }c_{p}s_{g}}\;\;\text {where }s_{g}=\frac{Y_{G}}{Y},c_{p}=\frac{Y_{\textit{PG}}}{Y_{G}}.\\ \widehat{N}_{t}= & {} \frac{\left( 1-\gamma ^{\left[ \delta \left( 1-\mu \right) -1\right] }c_{p}s_{g}\right) \gamma ^{-\delta \left( 1-\mu \right) } \left[ \widehat{C}_{t}-\widehat{A}_{t}+(1-\mu )(\gamma -1)\delta \left( \widehat{Y}_{\textit{OG},t}-\widehat{A}_{G,t}\right) \right] }{\gamma ^{-\delta \left( 1-\mu \right) }\left[ 1+(1-\mu )\delta \gamma \right] \left( 1-\gamma ^{\left[ \delta \left( 1-\mu \right) -1\right] }c_{p}s_{g}\right) +c_{p}s_{g}} \\&+\frac{c_{p}s_{g}\left( \widehat{Y}_{\textit{PG},t}-\widehat{A}_{G,t}\right) }{\gamma ^{-\delta \left( 1-\mu \right) }\left[ 1+(1-\mu )\delta \gamma \right] \left( 1-\gamma ^{\left[ \delta \left( 1-\mu \right) -1\right] }c_{p}s_{g}\right) +c_{p}s_{g}}.\\ \widehat{N}_{t}= & {} \Theta _{1}\left[ \widehat{C}_{t}-\widehat{A}_{t}+(1-\mu )(\gamma -1)\delta \left( \widehat{Y}_{\textit{OG},t}-\widehat{A}_{G,t}\right) \right] +\Theta _{2}\left( \widehat{Y}_{\textit{PG},t}-\widehat{A}_{G,t}\right) , \\ \text {where}\;\Theta _{1}= & {} \frac{\left( 1-\gamma ^{\left[ \delta \left( 1-\mu \right) -1\right] }c_{p}s_{g}\right) \gamma ^{-\delta \left( 1-\mu \right) }}{\gamma ^{-\delta \left( 1-\mu \right) }\left[ 1+(1-\mu )(\gamma -1)\delta \right] \left( 1-\gamma ^{\left[ \delta \left( 1-\mu \right) -1 \right] }c_{p}s_{g}\right) +c_{p}s_{g}} \\ \Theta _{2}= & {} \frac{c_{p}s_{g}}{\gamma ^{-\delta \left( 1-\mu \right) } \left[ 1+(1-\mu )(\gamma -1)\delta \right] \left( 1-\gamma ^{\left[ \delta \left( 1-\mu \right) -1\right] }c_{p}s_{g}\right) +c_{p}s_{g}}. \end{aligned}$$

Equation (47) is the New-Keynesian Phillips Curve for the manufacturing sector derived by log-linearizing (29) and (31) (for details see Galí 2008, Chap. 3).

Equation (51): Log-linearizing real marginal cost, \(\textit{mc}_{G,t},\) as in (27), and using a first order Taylor approximation we get

$$\begin{aligned} \textit{mc}_{G,t}= & {} \frac{\theta -1}{\theta }-\frac{Y_{\textit{PG},t}}{\theta Y_{\textit{OG},t}}\\ \textit{mc}_{G}+\textit{mc}_{G}\left( \frac{\textit{mc}_{G,t}-\textit{mc}_{G}}{\textit{mc}_{G}}\right)\approx & {} \frac{ \theta -1}{\theta }-\frac{Y_{\textit{PG}}}{\theta Y_{\textit{OG}}}+\frac{Y_{\textit{PG}}}{\theta Y_{\textit{OG}}} \left( \frac{Y_{\textit{OG},t}-Y_{\textit{OG}}}{Y_{OG}}\right) \\&-\frac{Y_{\textit{PG}}}{\theta Y_{\textit{OG}}}\left( \frac{Y_{\textit{PG},t}-Y_{\textit{PG}}}{Y_{PG}}\right) \\ \textit{mc}_{G}\widehat{mc}_{G,t}= & {} \frac{Y_{\textit{PG}}}{\theta Y_{\textit{OG}}}\widehat{Y}_{\textit{OG},t}- \frac{Y_{\textit{PG}}}{\theta Y_{\textit{OG}}}\widehat{Y}_{\textit{PG},t} \\ \widehat{mc}_{G,t}= & {} \Phi \left( \widehat{Y}_{\textit{OG},t}-\widehat{Y} _{\textit{PG},t}\right) \;\text {where}\;\Phi =\frac{c_{p}}{(\theta -1)(1-c_{p})-c_{p}}. \end{aligned}$$

From (28) the real marginal cost \(\left( V\right) \) is a constant and hence \(\widehat{mc}_{V,t}=0.\)

1.9 Derivation of the Flexible Price Equilibrium

The natural level of a variable is the flexible price equilibrium level. The natural level of the terms of trade in Eqs. (52) and (53) can be derived as (for Eq. 52)

$$\begin{aligned} T_{\textit{OGV},t}^{n} =\frac{P_{\textit{OG},t}}{P_{V,t}}=\frac{\frac{\textit{MC}_{G,t}}{\textit{mc}_{G,t}}}{ \frac{\textit{MC}_{V,t}}{\textit{mc}_{V,t}}}=\frac{\frac{W_{t}}{\textit{mc}_{G,t}A_{G,t}}}{\frac{W_{t}}{ \textit{mc}_{G,t}A_{V,t}}}=\frac{\textit{mc}_{V,t}}{\textit{mc}_{G,t}}\frac{A_{V,t}}{A_{G,t}}, \end{aligned}$$

where \(\textit{MC}\) is nominal marginal cost and mc is real marginal cost.

$$\begin{aligned} \widehat{T}_{\textit{OGV},t}^{n}= & {} \widehat{mc}_{V,t}-\widehat{mc}_{G,t}+\widehat{A} _{V,t}-\widehat{A}_{G,t} \\= & {} -\Phi (\widehat{Y}_{\textit{OG},t}^{n}-\widehat{Y}_{\textit{PG},t})+\widehat{A}_{V,t}- \widehat{A}_{G,t}. \end{aligned}$$

Similarly \(\widehat{T}_{\textit{AM},t}^{n}\) can be derived. For \(\widehat{w}_{t}^{n}\) consider first the aggregate price index, \(P_{t}^{n},\)

$$\begin{aligned} P_{t}^{n}= & {} \left( P_{A,t}^{n}\right) ^{\delta }\left( P_{M,t}^{n}\right) ^{1-\delta }=\left( P_{\textit{OG},t}^{n}\right) ^{\left( 1-\mu \right) \delta }\left( P_{V,t}^{n}\right) ^{\mu \delta }\left( P_{M,t}^{n}\right) ^{1-\delta } \\= & {} \left( \frac{\textit{MC}_{G,t}^{n}}{\textit{mc}_{G,t}^{n}}\right) ^{\left( 1-\mu \right) \delta }\left( \frac{\textit{MC}_{V,t}^{n}}{\textit{mc}_{V,t}^{n}}\right) ^{\mu \delta }\left( \frac{\textit{MC}_{M,t}^{n}}{\textit{mc}_{M,t}^{n}}\right) ^{1-\delta } \\= & {} \left( \frac{W_{t}^{n}}{A_{G,t}{} \textit{mc}_{G,t}^{n}}\right) ^{\left( 1-\mu \right) \delta }\left( \frac{W_{t}^{n}}{A_{V,t}{} \textit{mc}_{V,t}^{n}}\right) ^{\mu \delta }\left( \frac{W_{t}^{n}}{A_{M,t}{} \textit{mc}_{M,t}^{n}}\right) ^{1-\delta } \\= & {} \frac{W_{t}^{n}}{\left( A_{G,t}{} \textit{mc}_{G,t}^{n}\right) ^{\left( 1-\mu \right) \delta }\left( A_{V,t}{} \textit{mc}_{V,t}^{n}\right) ^{\mu \delta }\left( A_{M,t}{} \textit{mc}_{M,t}^{n}\right) ^{1-\delta }}\\= & {} \frac{W_{t}^{n}}{A_{t}\left( \textit{mc}_{G,t}^{n}\right) ^{\left( 1-\mu \right) \delta }\left( \textit{mc}_{V,t}^{n}\right) ^{\mu \delta }\left( \textit{mc}_{M,t}^{n}\right) ^{1-\delta }}.\\ w_{t}^{n}= & {} \frac{W_{t}^{n}}{P_{t}^{n}}=A_{t}\left( \textit{mc}_{G,t}^{n}\right) ^{\left( 1-\mu \right) \delta }\left( \textit{mc}_{V,t}^{n}\right) ^{\mu \delta }\left( \textit{mc}_{M,t}^{n}\right) ^{1-\delta }. \end{aligned}$$

Note that \(A_{t}=\left( A_{G,t}\right) ^{\left( 1-\mu \right) \delta }\left( A_{V,t}\right) ^{\mu \delta }\left( A_{M,t}\right) ^{1-\delta }\). Log-linearizing this we get,

$$\begin{aligned} \widehat{w}_{t}^{n}=\widehat{A}_{t}+\Phi \left( 1-\mu \right) \delta ( \widehat{Y}_{\textit{OG},t}^{n}-\widehat{Y}_{\textit{PG},t}). \end{aligned}$$

From the labor supply equation,

$$\begin{aligned} \widehat{w}_{t}^{n}=\psi \widehat{N}_{t}^{n}-\left( 1-\sigma \right) \widehat{\Gamma }_{t}+\sigma \widehat{C}_{t}^{n}. \end{aligned}$$

Substituting the value of \(\widehat{N}_{t}^{n}=\Theta _{1}\left[ \widehat{C} _{t}^{n}-\widehat{A}_{t}+(1-\mu )(\gamma -1)\delta \left( \widehat{Y} _{\textit{OG},t}^{n}-\widehat{A}_{G,t}\right) \right] +\Theta _{2}\left( \widehat{Y} _{\textit{PG},t}-\widehat{A}_{G,t}\right) \) above we get,

$$\begin{aligned} \widehat{w}_{t}^{n}= & {} \psi \left[ \Theta _{1}\left[ \widehat{C}_{t}^{n}- \widehat{A}_{t}+(1-\mu )(\gamma -1)\delta \left( \widehat{Y}_{\textit{OG},t}^{n}- \widehat{A}_{G,t}\right) \right] \right. \\&\left. +\,\Theta _{2}\left( \widehat{Y}_{\textit{PG},t}- \widehat{A}_{G,t}\right) \right] -\left( 1-\sigma \right) \widehat{\Gamma } _{t}+\sigma \widehat{C}_{t}^{n}. \end{aligned}$$

Replacing \(\widehat{w}_{t}^{n}\) with \(\widehat{A}_{t}+\Phi \left( 1-\mu \right) \delta (\widehat{Y}_{\textit{OG},t}^{n}-\widehat{Y}_{\textit{PG},t})\) yields

$$\begin{aligned} \widehat{A}_{t}+\Phi \left( 1-\mu \right) \delta (\widehat{Y}_{\textit{OG},t}^{n}- \widehat{Y}_{\textit{PG},t})= & {} \psi \Theta _{1}\left[ \widehat{C}_{t}^{n}-\widehat{A} _{t}+(1-\mu )(\gamma -1)\delta \left( \widehat{Y}_{\textit{OG},t}^{n}-\widehat{A} _{G,t}\right) \right] \\&+\,\psi \Theta _{2}\left( \widehat{Y}_{\textit{PG},t}-\widehat{A}_{G,t}\right) -\left( 1-\sigma \right) \widehat{\Gamma }_{t}+\sigma \widehat{C}_{t}^{n}. \end{aligned}$$

Rearranging this to get \(\widehat{C}_{t}^{n},\) we get Eq. (56)

$$\begin{aligned} \widehat{C}_{t}^{n}= & {} \frac{(\psi \Theta _{1}+1)}{\left( \psi \Theta _{1}+\sigma \right) }\widehat{A}_{t}-\frac{(\Phi \left( 1-\mu \right) \delta +\psi \Theta _{2})}{(\psi \Theta _{1}+\sigma )}\widehat{Y}_{\textit{PG},t}+\frac{ (1-\sigma )}{(\psi \Theta _{1}+\sigma )}\widehat{\Gamma }_{t} \\&+\frac{(\Phi \left( 1-\mu \right) \delta -\psi \Theta _{1}\left( \gamma -1\right) \left( 1-\mu \right) \delta )}{(\psi \Theta _{1}+\sigma )}\widehat{ Y}_{\textit{OG},t}^{n}\\&+\frac{(\psi \Theta _{1}\left( \gamma -1\right) \left( 1-\mu \right) \delta +\psi \Theta _{2})}{(\psi \Theta _{1}+\sigma )}\widehat{A} _{G,t}. \end{aligned}$$

1.10 Derivation of the Sticky Price Equilibrium: Eq. (59)

Using (41c) and (40) we get,

$$\begin{aligned} \widehat{mc}_{M,t}=\psi \widehat{N}_{t}+\sigma \widehat{C}_{t}-(1-\sigma ) \widehat{\Gamma }_{t}-\widehat{A}_{M,t}+\delta \widehat{T}_{\textit{AM},t}. \end{aligned}$$

Putting the value of\(\ \widehat{N}_{t}\) from (45), we get

$$\begin{aligned} \widehat{mc}_{M,t}= & {} \left( \psi \Theta _{1}+\sigma \right) \widehat{C} _{t}-\psi \Theta _{1}\left[ \widehat{A}_{t}-(1-\mu )\left( \gamma -1\right) \delta \left( \widehat{Y}_{\textit{OG},t}-\widehat{A}_{G,t}\right) \right] \\&+\,\psi \Theta _{2}\left( \widehat{Y}_{\textit{PG},t}-\widehat{A}_{G,t}\right) -(1-\sigma )\widehat{\Gamma }_{t}-\widehat{A}_{M,t}+\delta \widehat{T} _{\textit{AM},t}. \end{aligned}$$

At the natural level, \(\widehat{mc}_{M,t}^{n}=0,\) which can also be written as,

$$\begin{aligned} 0= & {} \left( \psi \Theta _{1}+\sigma \right) \widehat{C}_{t}^{n}-\psi \Theta _{1}\left[ \widehat{A}_{t}-(1-\mu )\left( \gamma -1\right) \delta \left( \widehat{Y}_{\textit{OG},t}^{n}-\widehat{A}_{G,t}\right) \right] \\&+\,\psi \Theta _{2}\left( \widehat{Y}_{\textit{PG},t}-\widehat{A}_{G,t}\right) -(1-\sigma )\widehat{\Gamma }_{t}-\widehat{A}_{M,t}+\delta \widehat{T} _{\textit{AM},t}^{n} \\ \widetilde{mc}_{M,t}= & {} \widehat{mc}_{M,t}-\widehat{mc}_{M,t}^{n}=\left( \psi \Theta _{1}+\sigma \right) \left( \widehat{C}_{t}-\widehat{C} _{t}^{n}\right) +\delta \left( \widehat{T}_{\textit{AM},t}-\widehat{T} _{\textit{AM},t}^{n}\right) \\ \widehat{mc}_{M,t}= & {} \left( \psi \Theta _{1}+\sigma \right) \widetilde{C} _{t}+\delta \widetilde{T}_{\textit{AM},t} \end{aligned}$$

Using demand functions, \(\widetilde{C}_{t}=\widetilde{Y}_{M,t}-\delta \widetilde{T}_{\textit{AM},t},\) the above equation can be written as,

$$\begin{aligned} \widehat{mc}_{M,t}=\left( \psi \Theta _{1}+\sigma \right) \widetilde{Y} _{M,t}-\delta \left( \psi \Theta _{1}+\sigma -1\right) \widetilde{T}_{\textit{AM},t}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghate, C., Gupta, S. & Mallick, D. Terms of Trade Shocks and Monetary Policy in India. Comput Econ 51, 75–121 (2018). https://doi.org/10.1007/s10614-016-9630-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-016-9630-z

Keywords

JEL Classification

Navigation