Skip to main content
Log in

Electrostatic engineering of the interface between heavy and light chains promotes antibody Fab fragment production

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Monoclonal antibodies and antibody fragments are used for diverse diagnostic and therapeutic applications. We have investigated the secretory production of Fab fragments from insect cells cotransfected with plasmid vectors carrying heavy- and light-chain genes. In the present study, to promote the formation of the disulfide bond between the heavy and light chains, some positively charged amino acid residues were introduced near the cysteine residue for the disulfide bond at the C-terminus of CL, while some negatively charged amino acid residues were added near the cysteine residue for the disulfide bond at the C-terminus of CH1. This electrostatic steering led to an increase in Fab secretions from insect cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahn WS, Antoniewicz MR (2012) Towards dynamic metabolic flux analysis in CHO cell cultures. Biotechnol J 7:61–74

    Article  CAS  Google Scholar 

  • Amanullah A, Otero JM, Mikola M, Hsu A, Zhang J, Aunins J, Schreyer HB, Hope JA, Russo AP (2010) Novel micro-bioreactor high throughput technology for cell culture process development: reproducibility and scalability assessment of fed batch CHO cultures. Biotechnol Bioeng 106:57–67

    CAS  Google Scholar 

  • Carton JM, Sauerwald T, Hawley-Nelson P, Morse B, Peffer N, Beck H, Lu J, Cotty A, Amegadzie B, Sweet R (2007) Codon engineering for improved antibody expression in mammalian cells. Protein Expr Purif 55:279–286

    Article  CAS  Google Scholar 

  • Colcher D, Pavlinkova G, Beresford G, Booth BJ, Choudhury A, Batra SK (1998) Pharmacokinetics and biodistribution of genetically-engineered antibodies. Q J Nucl Med 42:225–241

    CAS  Google Scholar 

  • Costa AR, Rodrigues ME, Henriques M, Azeredo J, Oliveira R (2010) Guidelines to cell engineering for monoclonal antibody production. Eur J Pharm Biopharm 74:127–138

    Article  Google Scholar 

  • Davies SL, O’Callaghan PM, McLeod J, Pybus LP, Sung YH, Rance J, Wilkinson SJ, Racher AJ, Young RJ, James DC (2011) Impact of gene vector design on the control of recombinant monoclonal antibody production by Chinese hamster ovary cells. Biotechnol Prog 27:1689–1699

    Article  CAS  Google Scholar 

  • Furuta T, Ogawa T, Yamaji H (2012) Production of antibody fragments using the baculovirus–insect cell system. Methods Mol Biol 907:371–387

    Article  CAS  Google Scholar 

  • Gilmartin AA, Lamp B, Rumenapf T, Persson MA, Rey FA, Krey T (2012) High-level secretion of recombinant monomeric murine and human single-chain Fv antibodies from Drosophila S2 cells. Protein Eng Des Sel 25:59–66

    Article  CAS  Google Scholar 

  • Haryadi R, Ho S, Kok YJ, Pu HX, Zheng L, Pereira NA, Li B, Bi X, Goh LT, Yang Y, Song Z (2015) Optimization of heavy chain and light chain signal peptides for high level expression of therapeutic antibodies in CHO cells. PLoS One 10:e0116878

    Article  Google Scholar 

  • Igawa T, Tsunoda H, Kikuchi Y, Yoshida M, Tanaka M, Koga A, Sekimori Y, Orita T, Aso Y, Hattori K, Tsuchiya M (2010) VH/VL interface engineering to promote selective expression and inhibit conformational isomerization of thrombopoietin receptor agonist single-chain diabody. Protein Eng Des Sel 23:667–677

    Article  CAS  Google Scholar 

  • Katakura Y, Kobayashi E, Kurokawa Y, Omasa T, Fujiyama K, Suga KI (1996) Cloning of cDNA and characterization of anti-RNase A monoclonal antibody 3A21. J Ferment Bioeng 82:312–314

    Article  CAS  Google Scholar 

  • Katsuda T, Sonoda H, Kumada Y, Yamaji H (2012) Production of antibody fragments in Escherichia coli. Methods Mol Biol 907:305–324

    Article  CAS  Google Scholar 

  • Kim JY, Kim YG, Lee GM (2012) CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl Microbiol Biotechnol 93:917–930

    Article  CAS  Google Scholar 

  • Kishishita S, Katayama S, Kodaira K, Takagi Y, Matsuda H, Okamoto H, Takuma S, Hirashima C, Aoyagi H (2015) Optimization of chemically defined feed media for monoclonal antibody production in Chinese hamster ovary cells. J Biosci Bioeng 120:78–84

    Article  CAS  Google Scholar 

  • Klatt S, Konthur Z (2012) Secretory signal peptide modification for optimized antibody-fragment expression-secretion in Leishmania tarentolae. Microb Cell Fact 11:97

    Article  CAS  Google Scholar 

  • Klein C, Sustmann C, Thomas M, Stubenrauch K, Croasdale R, Schanzer J, Brinkmann U, Kettenberger H, Regula JT, Schaefer W (2012) Progress in overcoming the chain association issue in bispecific heterodimeric IgG antibodies. MAbs 4:653–663

    Article  Google Scholar 

  • Kober L, Zehe C, Bode J (2013) Optimized signal peptides for the development of high expressing CHO cell lines. Biotechnol Bioeng 110:1164–1173

    Article  CAS  Google Scholar 

  • Li J, Menzel C, Meier D, Zhang C, Dubel S, Jostock T (2007) A comparative study of different vector designs for the mammalian expression of recombinant IgG antibodies. J Immunol Methods 318:113–124

    Article  CAS  Google Scholar 

  • Menzel C, Schirrmann T, Konthur Z, Jostock T, Dubel S (2008) Human antibody RNase fusion protein targeting CD30+ lymphomas. Blood 111:3830–3837

    Article  CAS  Google Scholar 

  • Mohan C, Kim YG, Koo J, Lee GM (2008) Assessment of cell engineering strategies for improved therapeutic protein production in CHO cells. Biotechnol J 3:624–630

    Article  CAS  Google Scholar 

  • Nichols P, Li L, Kumar S, Buck PM, Singh SK, Goswami S, Balthazor B, Conley TR, Sek D, Allen MJ (2015) Rational design of viscosity reducing mutants of a monoclonal antibody: hydrophobic versus electrostatic inter-molecular interactions. MAbs 7:212–230

    Article  CAS  Google Scholar 

  • Nishimiya D (2014) Proteins improving recombinant antibody production in mammalian cells. Appl Microbiol Biotechnol 98:1031–1042

    Article  CAS  Google Scholar 

  • Omasa T, Onitsuka M, Kim WD (2010) Cell engineering and cultivation of Chinese hamster ovary (CHO) cells. Curr Pharm Biotechnol 11:233–240

    Article  CAS  Google Scholar 

  • Palmberger D, Rendic D, Tauber P, Krammer F, Wilson IB, Grabherr R (2011) Insect cells for antibody production: evaluation of an efficient alternative. J Biotechnol 153:160–166

    Article  CAS  Google Scholar 

  • Perchiacca JM, Lee CC, Tessier PM (2014) Optimal charged mutations in the complementarity-determining regions that prevent domain antibody aggregation are dependent on the antibody scaffold. Protein Eng Des Sel 27:29–39

    Article  CAS  Google Scholar 

  • Puttikhunt C, Keelapang P, Khemnu N, Sittisombut N, Kasinrerk W, Malasit P (2008) Novel anti-dengue monoclonal antibody recognizing conformational structure of the prM-E heterodimeric complex of dengue virus. J Med Virol 80:125–133

    Article  CAS  Google Scholar 

  • Quek LE, Dietmair S, Kromer JO, Nielsen LK (2010) Metabolic flux analysis in mammalian cell culture. Metab Eng 12:161–171

    Article  CAS  Google Scholar 

  • Reinhart D, Damjanovic L, Kaisermayer C, Kunert R (2015) Benchmarking of commercially available CHO cell culture media for antibody production. Appl Microbiol Biotechnol 99:4645–4657

    Article  CAS  Google Scholar 

  • Schlapschy M, Skerra A (2011) Periplasmic chaperones used to enhance functional secretion of proteins in E. coli. Methods Mol Biol 705:211–224

    Article  CAS  Google Scholar 

  • Strop P, Ho WH, Boustany LM, Abdiche YN, Lindquist KC, Farias SE, Rickert M, Appah CT, Pascua E, Radcliffe T, Sutton J, Chaparro-Riggers J, Chen W, Casas MG, Chin SM, Wong OK, Liu SH, Vergara G, Shelton D, Rajpal A, Pons J (2012) Generating bispecific human IgG1 and IgG2 antibodies from any antibody pair. J Mol Biol 420:204–219

    Article  CAS  Google Scholar 

  • Tiwari A, Sankhyan A, Khanna N, Sinha S (2010) Enhanced periplasmic expression of high affinity humanized scFv against Hepatitis B surface antigen by codon optimization. Protein Expr Purif 74:272–279

    Article  CAS  Google Scholar 

  • Yamaji H, Manabe T, Watakabe K, Muraoka M, Fujii I, Fukuda H (2008) Production of functional antibody Fab fragment by recombinant insect cells. Biochem Eng J 41:203–209

    Article  CAS  Google Scholar 

  • Zhang YB, Howitt J, McCorkle S, Lawrence P, Springer K, Freimuth P (2004) Protein aggregation during overexpression limited by peptide extensions with large net negative charge. Protein Expr Purif 36:207–216

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Y. Kumada of the Kyoto Institute of Technology for providing us the plasmids encoding the Hc and Lc genes of the 3A21 Fab fragment. This research was partially supported by the programs for developing key technologies for discovering and manufacturing pharmaceuticals used for next-generation treatments and diagnoses from both the Ministry of Economy, Trade and Industry, Japan (METI) and the Japan Agency for Medical Research and Development (AMED).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Yamaji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohmuro-Matsuyama, Y., Mori, K., Hamada, H. et al. Electrostatic engineering of the interface between heavy and light chains promotes antibody Fab fragment production. Cytotechnology 69, 469–475 (2017). https://doi.org/10.1007/s10616-016-9955-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-016-9955-4

Keywords

Navigation