Skip to main content

Advertisement

Log in

Noise-free latent block model for high dimensional data

  • Published:
Data Mining and Knowledge Discovery Aims and scope Submit manuscript

Abstract

Co-clustering is known to be a very powerful and efficient approach in unsupervised learning because of its ability to partition data based on both the observations and the variables of a given dataset. However, in high-dimensional context co-clustering methods may fail to provide a meaningful result due to the presence of noisy and/or irrelevant features. In this paper, we tackle this issue by proposing a novel co-clustering model which assumes the existence of a noise cluster, that contains all irrelevant features. A variational expectation-maximization-based algorithm is derived for this task, where the automatic variable selection as well as the joint clustering of objects and variables are achieved via a Bayesian framework. Experimental results on synthetic datasets show the efficiency of our model in the context of high-dimensional noisy data. Finally, we highlight the interest of the approach on two real datasets which goal is to study genetic diversity across the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. https://archive.ics.uci.edu/ml/datasets.html.

  2. The datasets can be found here: https://github.com/laclauc/NFLB and the code will be available upon publication.

  3. https://rosenberglab.stanford.edu/data/rosenbergEtAl2002/diversitydata.stru.

  4. https://rosenberglab.stanford.edu/nativedata.html.

References

  • Baudry JP, Celeux G, Marin JM (2008) Selecting models focussing on the modeller purpose. In: COMPSTAT 2008, Springer, pp 337–348

  • Ben-David S, Haghtalab N (2014) Clustering in the presence of background noise. In: Proceedings of ICML, pp 280–288

  • Biernacki C, Celeux G, Govaert G (2000) Assessing a mixture model for clustering with the integrated completed likelihood. PAMI 22(7):719–725

    Article  Google Scholar 

  • Bouveyron C, Brunet-Saumard C (2014) Model-based clustering of high-dimensional data: a review. Comput Stat Data Anal 71:52–78

    Article  MathSciNet  MATH  Google Scholar 

  • Brault V, Keribin C, Mariadassou M (2017) Consistency and asymptotic normality of latent blocks model estimators. arXiv preprint arXiv:1704.06629

  • Celeux G, Martin-Magniette ML, Maugis C, Raftery AE (2011) Letter to the editor: “a framework for feature selection in clustering”. J Am Stat Assoc 106:383

    Article  MATH  Google Scholar 

  • Cuesta-Albertos JA, Gordaliza A, Matràn C (1997) Trimmed \(k\)-means: an attempt to robustify quantizers. Ann Stat 25(2):553–576

    Article  MathSciNet  MATH  Google Scholar 

  • Dave RN (1991) Characterization and detection of noise in clustering. Pattern Recognit Lett 12(11):657–664

    Article  Google Scholar 

  • Dave RN (1993) Robust fuzzy clustering algorithms. In: [Proceedings 1993] Second IEEE international conference on fuzzy systems, vol 2, pp 1281–1286

  • Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of KDD, AAAI Press, pp 226–231

  • Frühwirth-Schnatter S (2011) Dealing with label switching under model uncertainty. In: Mengersen KL, Robert CP, Titterington DM (eds) Mixtures: estimation and applications. Chap 10. Wiley, Hoboken, pp 213–239

    Chapter  Google Scholar 

  • García-Escudero LA, Gordaliza A, Matrán C, Mayo-Iscar A (2008) A general trimming approach to robust cluster analysis. Ann Stat 36(3):1324–1345

    Article  MathSciNet  MATH  Google Scholar 

  • García-Escudero LA, Gordaliza A, Matrán C, Mayo-Iscar A (2010) A review of robust clustering methods. Adv Data Anal Classif 4(2):89–109

    Article  MathSciNet  MATH  Google Scholar 

  • Govaert G, Nadif M (2003) Clustering with block mixture models. Pattern Recognit 36:463–473

    Article  MATH  Google Scholar 

  • Govaert G, Nadif M (2008) Block clustering with Bernoulli mixture models: comparison of different approaches. Comput Stat Data Anal 52(6):3233–3245

    Article  MathSciNet  MATH  Google Scholar 

  • Govaert G, Nadif M (2013) Co-clustering. Wiley, Hoboken

    Book  MATH  Google Scholar 

  • Hartigan JA (1972) Direct clustering of a data matrix. J Am Stat Assoc 67(337):123–129

    Article  Google Scholar 

  • Hoffman MD, Blei DM, Wang C, Paisley J (2013) Stochastic variational inference. J Mach Learn Res 14(1):1303–1347

    MathSciNet  MATH  Google Scholar 

  • Keribin C, Brault V, Celeux G, Govaert G (2015) Estimation and selection for the latent block model on categorical data. Stat Comput 25(6):1201–1216

    Article  MathSciNet  MATH  Google Scholar 

  • Law MHC, Figueiredo MAT, Jain AK (2004) Simultaneous feature selection and clustering using mixture models. IEEE Trans Pattern Anal Mach Intell 26:1154–1166

    Article  Google Scholar 

  • Li M, Zhang L (2008) Multinomial mixture model with feature selection for text clustering. Knowl Based Syst 21(7):704–708

    Article  Google Scholar 

  • Maugis C, Celeux G, Martin-Magniette ML (2009) Variable selection for clustering with gaussian mixture models. Biometrics 65(3):701–709

    Article  MathSciNet  MATH  Google Scholar 

  • Mirkin BG (1996) Mathematical classification and clustering. Nonconvex optimization and its applications. Kluwer academic publishers, Dordrecht

    Book  MATH  Google Scholar 

  • Pan W, Shen X (2007) Penalized model-based clustering with application to variable selection. J Mach Learn Res 8:1145–1164

    MATH  Google Scholar 

  • Patrikainen A, Meila M (2006) Comparing subspace clusterings. IEEE Trans Knowl Data Eng 18(7):902–916

    Article  Google Scholar 

  • Raftery AE, Dean N (2006) Variable selection for model-based clustering. J Am Stat Assoc 101:168–178

    Article  MathSciNet  MATH  Google Scholar 

  • Robert V, Vasseur Y (2017) Comparing high dimensional partitions, with the co-clustering adjusted rand index. arXiv:1705.06760

  • Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, Feldman MW (2002) Genetic structure of human populations. Science 298(5602):2381–2385

    Article  Google Scholar 

  • Wang S, Zhu J (2008) Variable selection for model-based high-dimensional clustering and its application to microarray data. Biometrics 64(2):440–448

    Article  MathSciNet  MATH  Google Scholar 

  • Wang S, Lewis CM, Jakobsson M, Ramachandran S, Ray N, Bedoya G, Rojas W, Parra MV, Molina JA, Gallo C, Mazzotti G, Poletti G, Hill K, Hurtado AM, Labuda D, Klitz W, Barrantes R, Bortolini MC, Salzano FM, Petzl-Erler ML, Tsuneto LT, Llop E, Rothhammer F, Excoffier L, Feldman MW, Rosenberg NA, Ruiz-Linares A (2007) Genetic variation and population structure in native Americans. PLoS Genet 3(11):e185

    Article  Google Scholar 

  • Wang X, Kabán A (2005) Finding uninformative features in binary data. Intell Data Eng Autom Learn IDEAL 2005:40–47

    Google Scholar 

  • Wyse J, Friel N (2012) Block clustering with collapsed latent block models. Stat Comput 22(2):415–428

    Article  MathSciNet  MATH  Google Scholar 

  • Wyse J, Friel N, Latouche P (2017) Inferring structure in bipartite networks using the latent blockmodel and exact ICL. Netw Sci 5(1):45–69. https://doi.org/10.1017/nws.2016.25

    Article  Google Scholar 

  • Zhou H, Pan W, Shen X (2009) Penalized model-based clustering with unconstrained covariance matrices. Electron J Stat 3:1473–1496

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Laclau.

Additional information

Responsible editor: Jesse Davis, Elisa Fromont, Derek Greene, Björn Bringmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laclau, C., Brault, V. Noise-free latent block model for high dimensional data. Data Min Knowl Disc 33, 446–473 (2019). https://doi.org/10.1007/s10618-018-0597-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10618-018-0597-3

Keywords

Navigation