Skip to main content
Log in

ReSKY: Efficient Subarray Skyline Computation in Array Databases

  • Published:
Distributed and Parallel Databases Aims and scope Submit manuscript

Abstract

Large-scale spatial data have been generated in various fields such as scientific domains and location-based services. Array databases, which model a space as an array, have become one of the means of managing such spatial data. Each cell in an array tends to interact with cells neighboring with regard to dimensions (such as latitude and longitude); therefore, instead of considering a single cell, considering a concept of subarray is required in some applications. In addition, each cell has several attribute values (such as temperature and price) to indicate its features. Based on the two observations, we propose a new type of query, subarray skyline, that provides a way to find meaningful subarrays or filter less meaningful subarrays considering attributes. We also introduce an efficient processing method, ReSKY, for subarray skyline query processing. To handle large-scale spatial data, we extend ReSKY to distributed processing. We also propose another version of ReSKY that reduces memory usage during query processing. Through extensive experiments using an array database and real datasets, we show that ReSKY has better performance than the existing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Stonebraker, M., Brown, P., Poliakov, A., Raman, S.: The Architecture of SciDB. In: Scientific and Statistical Database Management - 23rd International Conference, SSDBM 2011, Portland, OR, USA, July 20-22, 2011. Proceedings, pp. 1–16 (2011). https://doi.org/10.1007/978-3-642-22351-8_1

  2. Papadopoulos, S., Datta, K., Madden, S., Mattson, T.G.: The TileDB array data storage manager. PVLDB 10(4), 349–360 (2016). https://doi.org/10.14778/3025111.3025117

    Article  Google Scholar 

  3. Baumann, P., Dehmel, A., Furtado, P., Ritsch, R., Widmann, N.: The Multidimensional Database System RasDaMan. In: SIGMOD 1998, Proceedings ACM SIGMOD International Conference on Management of Data, June 2–4, 1998, Seattle, Washington, USA, pp. 575–577. ACM Press. https://doi.org/10.1145/276304.276386

  4. Zalipynis, R.A.R.: ChronosDB: Distributed, file based, geospatial array DBMS. PVLDB 11(10), 1247–1261 (2018). https://doi.org/10.14778/3231751.3231754

    Article  Google Scholar 

  5. Didan, K.: MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006 Distributed by NASA EOSDIS Land Processes DAAC

  6. Börzsönyi, S., Kossmann, D., Stocker, K.: The Skyline Operator. In: ICDE 2001, Proceedings of the 17th International Conference on Data Engineering, April 2-6, 2001, Heidelberg, Germany, pp. 421–430. IEEE Computer Society. https://doi.org/10.1109/ICDE.2001.914855

  7. Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In: SIGMOD’84, Proceedings of Annual Meeting, Boston, Massachusetts, USA, June 18-21, 1984, pp. 47–57. ACM Press. https://doi.org/10.1145/602259.602266

  8. Zhang, S., Mamoulis, N., Cheung, D.W.: Scalable Skyline Computation Using Object-based Space Partitioning. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2009, Providence, Rhode Island, USA, June 29 - July 2, 2009, pp. 483–494. ACM. https://doi.org/10.1145/1559845.1559897

  9. Choi, D., Yoon, H., Chung, Y.D.: Subarray Skyline Query Processing in Array Databases. In: SSDBM 2021: 33rd International Conference on Scientific and Statistical Database Management, Tampa, FL, USA, July 6-7, 2021, pp. 37–48. ACM. https://doi.org/10.1145/3468791.3468799

  10. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pellow, F., Pirahesh, H.: Data cube: a relational aggregation operator generalizing group-by, cross-tab, and sub totals. Data Mining Knowl. Discov. 1(1), 29–53 (1997). https://doi.org/10.1023/A:1009726021843

    Article  Google Scholar 

  11. Vitter, J.S.: Random Sampling with a Reservoir. ACM Trans. Math. Softw.11(1), 37–57 (1985). https://doi.org/10.1145/3147.3165

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang, K., Yang, D., Gao, H., Li, J., Wang, H., Cai, Z.: VMPSP: Efficient Skyline Computation Using VMP-Based Space Partitioning. In: Database Systems for Advanced Applications - DASFAA 2016 International Workshops: BDMS, BDQM, MoI, and SeCoP, Dallas, TX, USA, April 16-19, 2016, Proceedings, vol. 9645, pp. 179–193. Springer. https://doi.org/10.1007/978-3-319-32055-7_16

  13. Zhang, J., Wang, W., Jiang, X., Ku, W., Lu, H.: An MBR-Oriented Approach for Efficient Skyline Query Processing. In: 35th IEEE International Conference on Data Engineering, ICDE 2019, Macao, China, April 8-11, 2019, pp. 806–817. IEEE. https://doi.org/10.1109/ICDE.2019.00077

  14. Lee, K.C.K., Zheng, B., Li, H., Lee, W.: Approaching the Skyline in Z Order. In: Proceedings of the 33rd International Conference on Very Large Data Bases, University of Vienna, Austria, September 23-27, 2007, pp. 279–290. ACM. http://www.vldb.org/conf/2007/papers/research/p279-lee.pdf

  15. Rocha-Junior, J.B., Vlachou, A., Doulkeridis, C., Nørvåg, K.: AGiDS: A Grid-Based Strategy for Distributed Skyline Query Processing. In: Data Management in Grid and Peer-to-Peer Systems, Second International Conference, Globe 2009, Linz, Austria, September 1-2, 2009, Proceedings, vol. 5697, pp. 12–23. Springer. https://doi.org/10.1007/978-3-642-03715-3_2

  16. Vlachou, A., Doulkeridis, C., Kotidis, Y.: Angle-based Space Partitioning for Efficient Parallel Skyline Computation. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, pp. 227–238. ACM. https://doi.org/10.1145/1376616.1376642

  17. Tang, M., Yu, Y., Aref, W.G., Malluhi, Q.M., Ouzzani, M.: Efficient parallel skyline query processing for high-dimensional data. IEEE Trans. Knowl. Data Eng. 30(10), 1838–1851. https://doi.org/10.1109/TKDE.2018.2809598

  18. Park, Y., Min, J., Shim, K.: Parallel computation of skyline and reverse skyline queries using MapReduce. PVLDB 6(14), 2002–2013. https://doi.org/10.14778/2556549.2556580

  19. Vermote, E.: MOD09A1 MODIS/Terra Surface Reflectance 8-Day L3 Global 500m SIN Grid V006 Distributed by NASA EOSDIS Land Processes DAAC

  20. Vermote, E.: MYD09A1 MODIS/Aqua Surface Reflectance 8-Day L3 Global 500m SIN Grid V006 Distributed by NASA EOSDIS Land Processes DAAC

  21. Soroush, E., Balazinska, M., Wang, D.L.: ArrayStore: A Storage Manager for Complex Parallel Array Processing. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2011, Athens, Greece, June 12–16, 2011, pp. 253–264. ACM. https://doi.org/10.1145/1989323.1989351

  22. Brown, P.G.: Overview of SciDB: Large Scale Array Storage, Processing and Analysis. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2010, Indianapolis, Indiana, USA, June 6–10, 2010, pp. 963–968. ACM. https://doi.org/10.1145/1807167.1807271

  23. Stonebraker, M., Brown, P., Zhang, D., Becla, J.: SciDB: A Database Management System for Applications with Complex Analytics. Comput. Sci. Eng. 15(3), 54–62 (2013). https://doi.org/10.1109/MCSE.2013.19

    Article  Google Scholar 

  24. Stonebraker, M., Becla, J., DeWitt, D.J., Lim, K., Maier, D., Ratzesberger, O., Zdonik, S.B.: Requirements for Science Data Bases and SciDB. In: Fourth Biennial Conference on Innovative Data Systems Research. CIDR ’09

  25. Cudre-Mauroux, P., Kimura, H., Lim, K.-T., Rogers, J., Simakov, R., Soroush, E., Velikhov, P., Wang, D.L., Balazinska, M., Becla, J., DeWitt, D., Heath, B., Maier, D., Madden, S., Patel, J., Stonebraker, M., Zdonik, S.: A demonstration of SciDB: a science-oriented DBMS. PVLDB 2(2), 1534–1537 (2009). https://doi.org/10.14778/1687553.1687584

    Article  Google Scholar 

  26. Zalipynis, R.A.R.: ChronosDB in Action: Manage, Process, and Visualize Big Geospatial Arrays in the Cloud. In: Proceedings of the 2019 International Conference on Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30–July 5, 2019, pp. 1985–1988. ACM. https://doi.org/10.1145/3299869.3320242

  27. Zalipynis, R.A.R.: BitFun: fast answers to queries with tunable functions in geospatial array DBMS. PVLDB 13(12), 2909–2912. https://doi.org/10.14778/3415478.3415506

  28. Kim, M., Suh, I., Chung, Y.D.: MARS: A Multi-level Array Representation for Simulation Data. Fut. Gen. Comput. Syst. 111, 419–434 . https://doi.org/10.1016/j.future.2019.11.010

  29. Ge, T., Zdonik, S.B.: Handling Uncertain Data in Array Database Systems. In: Proceedings of the 24th International Conference on Data Engineering, ICDE 2008, April 7-12, 2008, Cancún, Mexico, pp. 1140–1149. IEEE. https://doi.org/10.1109/ICDE.2008.4497523

  30. Peng, L., Diao, Y.: Supporting Data Uncertainty in Array Databases. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, Melbourne, Victoria, Australia, May 31–June 4, 2015, pp. 545–560. ACM. https://doi.org/10.1145/2723372.2723738

  31. Seering, A., Cudré-Mauroux, P., Madden, S., Stonebraker, M.: Efficient Versioning for Scientific Array Databases. In: IEEE 28th International Conference on Data Engineering (ICDE 2012), Washington, DC, USA (Arlington, Virginia), 1–5 April, 2012, pp. 1013–1024. IEEE. https://doi.org/10.1109/ICDE.2012.102

  32. Soroush, E., Balazinska, M.: Time Travel in a Scientific Array Database. In: 29th IEEE International Conference on Data Engineering, ICDE 2013, Brisbane, Australia, April 8–12, 2013, pp. 98–109. IEEE. https://doi.org/10.1109/ICDE.2013.6544817

  33. Xing, H., Agrawal, G.: COMPASS: Compact Array Storage with Value Index. In: Proceedings of the 30th International Conference on Scientific and Statistical Database Management, SSDBM 2018, Bozen-Bolzano, Italy, July 09-11, 2018. ACM. https://doi.org/10.1145/3221269.3223033

  34. Xing, H., Agrawal, G.: Accelerating Array Joining with Integrated Value-Index. In: Proceedings of the 31st International Conference on Scientific and Statistical Database Management, SSDBM 2019, Santa Cruz, CA, USA, July 23-25, 2019, pp. 145–156. ACM. https://doi.org/10.1145/3335783.3335790

  35. Soroush, E., Balazinska, M.: Hybrid Merge/Overlap Execution Technique for Parallel Array Processing. In: Proceedings of the 2011 EDBT/ICDT Workshop on Array Databases, Uppsala, Sweden, March 25, 2011, pp. 20–30. ACM. https://doi.org/10.1145/1966895.1966898

  36. Wang, Y., Nandi, A., Agrawal, G.: SAGA: Array Storage as a DB with Support for Structural Aggregations. In: Conference on Scientific and Statistical Database Management, SSDBM ’14, Aalborg, Denmark, June 30 - July 02, 2014. ACM. https://doi.org/10.1145/2618243.2618270

  37. Duggan, J., Papaemmanouil, O., Battle, L., Stonebraker, M.: Skew-Aware Join Optimization for Array Databases. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015, pp. 123–135. ACM. https://doi.org/10.1145/2723372.2723709

  38. Wang, Y., Su, Y., Agrawal, G.: A Novel Approach for Approximate Aggregations over Arrays. In: Proceedings of the 27th International Conference on Scientific and Statistical Database Management, SSDBM ’15, La Jolla, CA, USA, June 29 - July 1, 2015. ACM. https://doi.org/10.1145/2791347.2791349

  39. Jiang, L., Kawashima, H., Tatebe, O.: Incremental Window Aggregates over Array Database. In: 2014 IEEE International Conference on Big Data, pp. 183–188. IEEE. https://doi.org/10.1109/BigData.2014.7004230

  40. Jiang, L., Kawashima, H., Tatebe, O.: Efficient Window Aggregate Method on Array Database System. J. Inf. Process. 24(6), 867–877 . https://doi.org/10.2197/ipsjjip.24.867

  41. Jiang, L., Kawashima, H., Tatebe, O.: Fast Window Aggregate on Array Database by Recursive Incremental Computation. In: 12th IEEE International Conference on e-Science, pp. 101–110. IEEE. https://doi.org/10.1109/eScience.2016.7870890

  42. Zhao, W., Rusu, F., Dong, B., Wu, K.: Similarity Join over Array Data. In: Proceedings of the 2016 International Conference on Management of Data, pp. 2007–2022. ACM. https://doi.org/10.1145/2882903.2915247

  43. Zhao, W., Rusu, F., Dong, B., Wu, K., Nugent, P.: Incremental View Maintenance over Array Data. In: Proceedings of the 2017 ACM International Conference on Management of Data, pp. 139–154. ACM. https://doi.org/10.1145/3035918.3064041

  44. Zalipynis, R.A.R.: Convergence of Array DBMS and Cellular Automata: A Road Traffic Simulation Case. In: SIGMOD ’21: International Conference on Management of Data, Virtual Event, China, June 20-25, 2021, pp. 2399–2403. ACM. https://doi.org/10.1145/3448016.3458457

  45. Kim, M., Lee, H., Chung, Y.D.: SEACOW: Synopsis Embedded Array Compression using Wavelet Transform. CoRR (2021)

  46. Zalipynis, R.A.R.: Array DBMS: past, present, and (near) future. PVLDB 14(12), 3186–3189

  47. Kalinin, A., Çetintemel, U., Zdonik, S.B.: Searchlight: enabling integrated search and exploration over lmage multidimensional data. PVLDB 8(10), 1094–1105. https://doi.org/10.14778/2794367.2794378

  48. Choi, D., Park, C., Chung, Y.D.: Progressive Top-k subarray query processing in array databases. PVLDB 12(9), 989–1001. https://doi.org/10.14778/3329772.3329776

  49. Kung, H.T., Luccio, F., Preparata, F.P.: On Finding the Maxima of a Set of Vectors. J. ACM 22(4), 469–476 (1975). https://doi.org/10.1145/321906.321910

    Article  MathSciNet  MATH  Google Scholar 

  50. Tan, K., Eng, P., Ooi, B.C.: Efficient Progressive Skyline Computation. In: VLDB 2001, Proceedings of 27th International Conference on Very Large Data Bases, September 11-14, 2001, Roma, Italy, pp. 301–310. http://www.vldb.org/conf/2001/P301.pdf

  51. Kossmann, D., Ramsak, F., Rost, S.: Shooting Stars in the Sky: An Online Algorithm for Skyline Queries. In: Proceedings of 28th International Conference on Very Large Data Bases, VLDB 2002, Hong Kong, August 20–23, 2002, pp. 275–286 (2002). https://doi.org/10.1016/B978-155860869-6/50032-9

  52. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An Optimal and Progressive Algorithm for Skyline Queries. In: Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, San Diego, California, USA, June 9-12, 2003, pp. 467–478. ACM. https://doi.org/10.1145/872757.872814

  53. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive Skyline Computation in Database Systems. ACM Trans. Database Syst. 30(1), 41–82 (2005). https://doi.org/10.1145/1061318.1061320

    Article  Google Scholar 

  54. Lee, K.C., Lee, W.-C., Zheng, B., Li, H., Tian, Y.: Z-SKY: an Efficient Skyline Query Processing Framework Based on Z-order. VLDB J. 19(3), 333–362 (2010). https://doi.org/10.1007/s00778-009-0166-x

    Article  Google Scholar 

  55. Han, X., Li, J., Yang, D., Wang, J.: Efficient Skyline Computation on Big Data. IEEE Trans. Knowl. Data Eng. 25(11), 2521–2535 (2012). https://doi.org/10.1109/TKDE.2012.203

    Article  Google Scholar 

  56. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with Presorting. In: Proceedings of the 19th International Conference on Data Engineering, March 5–8, 2003, Bangalore, India, pp. 717–719. IEEE. https://doi.org/10.1109/ICDE.2003.1260846

  57. Godfrey, P., Shipley, R., Gryz, J.: Maximal Vector Computation in Large Data Sets. In: Proceedings of the 31st International Conference on Very Large Data Bases, Trondheim, Norway, August 30 - September 2, 2005, pp. 229–240. ACM. http://www.vldb.org/archives/website/2005/program/paper/tue/p229-godfrey.pdf

  58. Bartolini, I., Ciaccia, P., Patella, M.: SaLSa: Computing the Skyline without Scanning the Whole Sky. In: Proceedings of the 2006 ACM CIKM International Conference on Information and Knowledge Management, Arlington, Virginia, USA, November 6-11, 2006, pp. 405–414. ACM. https://doi.org/10.1145/1183614.1183674

  59. Bartolini, I., Ciaccia, P., Patella, M.: Efficient Sort-based Skyline Evaluation. ACM Trans. Database Syst. 33(4) (2008). https://doi.org/10.1145/1412331.1412343

  60. Lee, J., Hwang, S.-w.: SkyTree: Scalable Skyline Computation for Sensor Data. In: Proceedings of the Third International Workshop on Knowledge Discovery from Sensor Data, pp. 114–123 (2009). https://doi.org/10.1145/1601966.1601985. ACM

  61. Lee, J., Hwang, S.: BSkyTree: Scalable Skyline Computation using a Balanced Pivot Selection. In: EDBT 2010, 13th International Conference on Extending Database Technology, Lausanne, Switzerland, March 22-26, 2010, Proceedings. ACM International Conference Proceeding Series, vol. 426, pp. 195–206. ACM. https://doi.org/10.1145/1739041.1739067

  62. Lee, J., Hwang, S.-W.: Scalable Skyline Computation Using a Balanced Pivot Selection Technique. Inf. Syst. 39, 1–21 (2014). https://doi.org/10.1016/j.is.2013.05.005

    Article  Google Scholar 

  63. Zhang, H., Zhang, Q.: Communication-Efficient Distributed Skyline Computation. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, CIKM 2017, Singapore, November 06 - 10, 2017, pp. 437–446. ACM. https://doi.org/10.1145/3132847.3132927

  64. Zhu, L., Tao, Y., Zhou, S.: Distributed skyline retrieval with low bandwidth consumption. IEEE Trans. Knowl. Data Eng. 21(3), 384–400 (2009). https://doi.org/10.1109/TKDE.2008.142

    Article  Google Scholar 

  65. Huang, J., Zhao, F., Chen, J., Pei, J., Yin, J.: Towards progressive and load balancing distributed computation: a case study on skyline analysis. J. Comput. Sci. Technol. 25(3), 431–443 (2010). https://doi.org/10.1007/s11390-010-9335-z

    Article  Google Scholar 

  66. Köhler, H., Yang, J., Zhou, X.: Efficient Parallel Skyline Processing using Hyperplane Projections. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2011, Athens, Greece, June 12-16, 2011, pp. 85–96. ACM. https://doi.org/10.1145/1989323.1989333

  67. Wu, P., Zhang, C., Feng, Y., Zhao, B.Y., Agrawal, D., Abbadi, A.E.: Parallelizing Skyline Queries for Scalable Distribution. In: Advances in Database Technology - EDBT 2006, 10th International Conference on Extending Database Technology, Munich, Germany, March 26–31, 2006, Proceedings, vol. 3896, pp. 112–130. Springer. https://doi.org/10.1007/11687238_10

  68. Mullesgaard, K., Pederseny, J.L., Lu, H., Zhou, Y.: Efficient Skyline Computation in MapReduce. In: Proceedings of the 17th International Conference on Extending Database Technology, EDBT 2014, Athens, Greece, March 24-28, 2014, pp. 37–48 (2014). https://doi.org/10.5441/002/edbt.2014.05

  69. Zhang, B., Zhou, S., Guan, J.: Adapting Skyline Computation to the MapReduce Framework: Algorithms and Experiments. In: Database Systems for Adanced Applications - 16th International Conference, DASFAA 2011, International Workshops: GDB, SIM3, FlashDB, SNSMW, DaMEN, DQIS, Hong Kong, China, April 22-25, 2011. Proceedings, vol. 6637, pp. 403–414. Springer. https://doi.org/10.1007/978-3-642-20244-5_39

  70. Zhang, J., Jiang, X., Ku, W., Qin, X.: Efficient Parallel Skyline Evaluation Using MapReduce. IEEE Trans. Parallel Distrib. Syst. 27(7), 1996–2009 (2016). https://doi.org/10.1109/TPDS.2015.2472016

    Article  Google Scholar 

  71. Chen, L., Hwang, K., Wu, J.: MapReduce Skyline Query Processing with a New Angular Partitioning Approach. In: 26th IEEE International Parallel and Distributed Processing Symposium Workshops & PhD Forum, IPDPS 2012, Shanghai, China, May 21–25, 2012, pp. 2262–2270. IEEE Computer Society. https://doi.org/10.1109/IPDPSW.2012.279

  72. Im, H., Park, S.: Group skyline computation. Inf. Sci. 188, 151–169 (2012). https://doi.org/10.1016/j.ins.2011.11.014

    Article  MathSciNet  MATH  Google Scholar 

  73. Zhang, N., Li, C., Hassan, N., Rajasekaran, S., Das, G.: On Skyline Groups. IEEE Trans. Knowl. Data Eng. 26(4), 942–956 (2014). https://doi.org/10.1109/TKDE.2013.119

    Article  Google Scholar 

  74. Li, C., Zhang, N., Hassan, N., Rajasekaran, S., Das, G.: On Skyline Groups. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, pp. 2119–2123. ACM. https://doi.org/10.1145/2396761.2398585

  75. Liu, J., Xiong, L., Pei, J., Luo, J., Zhang, H.: Finding Pareto Optimal Groups: Group-based Skyline. PVLDB 8(13), 2086–2097 (2015). https://doi.org/10.14778/2831360.2831363

  76. Yu, W., Qin, Z., Liu, J., Xiong, L., Chen, X., Zhang, H.: Fast Algorithms for Pareto Optimal Group-Based Skyline. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 417–426. ACM. https://doi.org/10.1145/3132847.3132950

  77. Wang, C., Wang, C., Guo, G., Ye, X., Philip, S.Y.: Efficient Computation of G-Skyline Groups. IEEE Trans. Knowl. Data Eng. 30(4), 674–688 (2018). https://doi.org/10.1109/TKDE.2017.2777994

    Article  Google Scholar 

  78. Li, K., Yang, Z., Xiao, G., Li, K.: Progressive Approaches for Pareto Optimal Groups Computation. IEEE Trans. Knowl. Data Eng. 31(3), 521–534 (2019). https://doi.org/10.1109/TKDE.2018.2837117

    Article  Google Scholar 

  79. Choi, D., Chung, C., Tao, Y.: A Scalable Algorithm for Maximizing Range Sum in Spatial Databases. PVLDB 5(11), 1088–1099 (2012). https://doi.org/10.14778/2350229.2350230

    Article  Google Scholar 

  80. Feng, K., Cong, G., Bhowmick, S.S., Peng, W., Miao, C.: Towards Best Region Search for Data Exploration. In: Proceedings of the 2016 International Conference on Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016, pp. 1055–1070. ACM. https://doi.org/10.1145/2882903.2882960

  81. Nandy, S.C., Bhattacharya, B.B.: A Unified Algorithm for Finding Maximum and Minimum Object Enclosing Rectangles and Cuboids. Comput. Math. Appl. 29(8), 45–61 (1995). https://doi.org/10.1016/0898-1221(95)00029-X

    Article  MathSciNet  MATH  Google Scholar 

  82. Mostafiz, M.I., Mahmud, S.M.F., Hussain, M.M.-u., Ali, M.E., Trajcevski, G.: Class-Based Conditional MaxRS Query in Spatial Data Streams. In: Proceedings of the 29th International Conference on Scientific and Statistical Database Management. ACM. https://doi.org/10.1145/3085504.3085517

  83. Liu, J., Yu, G., Sun, H.: Subject-Oriented Top-k Hot Region Queries in Spatial Dataset. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, pp. 2409–2412. ACM. https://doi.org/10.1145/2063576.2063979

  84. Feng, K., Zhao, K., Liu, Y.: A System for Region Search and Exploration. PVLDB 9(13), 1549–1552 (2016). https://doi.org/10.14778/3007263.3007306

    Article  Google Scholar 

  85. Feng, K., Cong, G., Jensen, C.S., Guo, T.: Finding Attribute-Aware Similar Regions for Data Analysis. PVLDB 12(11), 1414–1426 (2019). https://doi.org/10.14778/3342263.3342277

    Article  Google Scholar 

  86. Kalinin, A., Çetintemel, U., Zdonik, S.: Interactive Search and Exploration of Waveform Data with Searchlight. In: Proceedings of the 2016 International Conference on Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016, pp. 2105–2108. ACM. https://doi.org/10.1145/2882903.2899404

  87. Lee, K.Y., Suh, Y.: A Pattern-based Outlier Region Detection Method for Two-Dimensional Arrays. J. Supercomput. 75(1), 170–188 (2019). https://doi.org/10.1007/s11227-018-2418-2

    Article  Google Scholar 

  88. Feng, K., Guo, T., Cong, G., Bhowmick, S.S., Ma, S.: SURGE: Continuous Detection of Bursty Regions Over a Stream of Spatial Objects. IEEE Trans. Knowl. Data Eng. 32(11), 2254–2268 (2020). https://doi.org/10.1109/TKDE.2019.2915654

    Article  Google Scholar 

  89. Amagata, D., Hara, T.: Monitoring MaxRS in Spatial Data Streams. In: Proceedings of the 19th International Conference on Extending Database Technology, EDBT 2016, pp. 317–328. https://doi.org/10.5441/002/edbt.2016.30

  90. Amagata, D., Hara, T.: A General Framework for MaxRS and MaxCRS Monitoring in Spatial Data Streams. ACM Trans. Spatial Algorithms Syst. 3, 1 (2017). https://doi.org/10.1145/3080554

Download references

Acknowledgements

We thank the anonymous reviewers for reviewing the paper. This work was supported by (1) the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (MSIT) (No. NRF-2020R1A2C2013286), (2) MSIT under the ICT Creative Consilience program (IITP-2022-2020-0-01819) supervised by the IITP (Institute for Information communications Technology Planning Evaluation), and (3) Basic Science Research Program through NRF funded by the Ministry of Education (NRF-2021R1A6A1A13044830).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yon Dohn Chung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, D., Yoon, H. & Chung, Y.D. ReSKY: Efficient Subarray Skyline Computation in Array Databases. Distrib Parallel Databases 40, 261–298 (2022). https://doi.org/10.1007/s10619-022-07419-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10619-022-07419-5

Keywords

Navigation