Skip to main content
Log in

Constructions of maximum distance separable symbol-pair codes using cyclic and constacyclic codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Symbol-pair code is a new coding framework which is proposed to correct errors in the symbol-pair read channel. In particular, maximum distance separable (MDS) symbol-pair codes are a kind of symbol-pair codes with the best possible error-correction capability. Employing cyclic and constacyclic codes, we construct three new classes of MDS symbol-pair codes with minimum pair-distance five or six. Moreover, we find a necessary and sufficient condition which ensures a class of cyclic codes to be MDS symbol-pair codes. This condition is related to certain property of a special kind of linear fractional transformations. A detailed analysis on these linear fractional transformations leads to an algorithm, which produces many MDS symbol-pair codes with minimum pair-distance seven.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cassuto, Y., Blaum, M.: Codes for symbol-pair read channels. In: Proceedings of the International Symposium on Information Theory, pp. 988–992 (2010)

  2. Cassuto, Y., Blaum, M.: Codes for symbol-pair read channels. IEEE Trans. Inf. Theory 57(12), 8011–8020 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cassuto, Y., Litsyn, S.: Symbol-pair codes: algebraic constructions and asymptotic bounds. In: Proceedings of the International Symposium on Information Theory, pp. 2348–2352 (2011)

  4. Chee, Y.M., Kiah, H.M., Wang, C.: Maximum distance separable symbol-pair codes. In: Proceedings of the International Symposium on Information Theory, pp. 2886–2890 (2012)

  5. Chee, Y.M., Ji, L., Kiah, H.M., Wang, C., Yin, J.: Maximum distance separable codes for symbol-pair read channels. IEEE Trans. Inf. Theory 59(11), 7259–7267 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  7. Kai, X., Zhu, S., Li, P.: A construction of new MDS symbol-pair codes. IEEE Trans. Inf. Theory 61(11), 5828–5834 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Yaakobi, E., Bruck, J., Siegel, P.H.: Decoding of cyclic codes over symbol-pair read channels. In: Proceedings of the International Symposium on Information Theory, pp. 2891–2895 (2012)

Download references

Acknowledgments

The authors wish to thank the anonymous reviewers for their comments which are very helpful to improve the paper. The first author would like to express his gratitude to Prof. Maosheng Xiong, Hong Kong University of Science and Technology, for the enlightening discussions on this topic. The research of G. Ge is supported by the National Natural Science Foundation of China under Grant Nos. 11431003 and 61571310.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennian Ge.

Additional information

Communicated by C. Mitchell.

Appendix

Appendix

Let q be a prime power. For \(u,v,w,z \in \mathbb {F}_q\) and \(\delta \in \mathbb {F}_{q^2}\), define a linear fractional transformation from \(\mathbb {F}_{q^2}\) to \(\mathbb {F}_{q^2}\) by

$$\begin{aligned} f_{u,v,w,z}(\delta )=\frac{u+v\delta }{w+z\delta }, \end{aligned}$$

where \(w+z\delta \ne 0\) and \(uz-vw \ne 0\). We further assume that \(z \ne 0\), since otherwise, \(f_{u,v,w,z}\) degenerates into a linear function. Below, we will study this special kind of linear fractional transformation. In particular, suppose \(\delta \in \mathbb {F}_{q^2}{\setminus } \mathbb {F}_q\), we will present a necessary and sufficient condition such that

$$\begin{aligned} \delta ^i=\frac{u+v\delta }{w+z\delta } \end{aligned}$$

for some integer i. This condition provides a criterion to determine whether the linear fractional transformation \(f_{u,v,w,z}\) maps \(\delta \) to an element belonging to the multiplicative cyclic group generated by \(\delta \).

Proposition 17

Let \(\delta \in \mathbb {F}_{q^2}{\setminus } \mathbb {F}_q\). Let \(x^2-bx-c\) be the monic minimal polynomial of \(\delta \) over \(\mathbb {F}_q\). For an integer \(i \ge 2\), define

$$\begin{aligned} a_0^{(i)}=\sum _{j=0}^{\lfloor \frac{i-2}{2} \rfloor } {i-2-j \atopwithdelims ()j}b^{i-2-2j}c^{j+1}, \quad a_1^{(i)}=\sum _{j=0}^{\lfloor \frac{i-1}{2} \rfloor } {i-1-j \atopwithdelims ()j}b^{i-1-2j}c^{j}. \end{aligned}$$
(4)

Then for \(i \ge 0\), \(\delta ^i=\frac{u+v\delta }{w+z\delta }\) if and only if one of the following holds:

  1. (1)

    If \(i=0\), then \(u=w\), \(v=z\).

  2. (2)

    If \(i=1\), then \(b=\frac{v-w}{z}\) and \(c=\frac{u}{z}\).

  3. (3)

    If \(i \ge 2\), then

    $$\begin{aligned} a_1^{(i)}\ne 0, \quad b=-\frac{a_0^{(i)}}{a_1^{(i)}}+\frac{v}{za_1^{(i)}}-\frac{w}{z}, \quad c=-\frac{wa_0^{(i)}}{za_1^{(i)}}+\frac{u}{za_1^{(i)}}. \end{aligned}$$

Proof

(1) and (2) are trivial. We only consider (3) below. Since \(\delta ^i=\frac{u+v\delta }{w+z\delta }\) and \(z \ne 0\), we have \(\delta ^{i+1}+\frac{w}{z}\delta ^{i}-\frac{v}{z}\delta -\frac{u}{z}=0\). Therefore, \(\delta \) is a root of the polynomial \(x^{i+1}+\frac{w}{z}x^{i}-\frac{v}{z}x-\frac{u}{z}\) and

$$\begin{aligned} x^{i+1}+\frac{w}{z}x^{i}-\frac{v}{z}x-\frac{u}{z} \equiv 0 \pmod {x^2-bx-c}. \end{aligned}$$

For an integer \(i\ge 0\), we define a polynomial \(T_i(x)=x^{i+1}+\frac{w}{z}x^{i}\). For any \(i \ge 2\), we have the following recurrence relation:

$$\begin{aligned} T_i(x)&\equiv x^{i+1}+\frac{w}{z}x^{i} \\&\equiv bx^{i}+cx^{i-1}+\frac{w}{z}(bx^{i-1}+cx^{i-2}) \\&\equiv b(x^i+\frac{w}{z}x^{i-1})+c(x^{i-1}+\frac{w}{z}x^{i-2}) \\&\equiv bT_{i-1}(x)+cT_{i-2}(x) \pmod {x^2-bx-c}. \end{aligned}$$

By employing this recurrence relation repeatedly, we have

$$\begin{aligned} T_i(x)&\equiv d_2^{(i)}T_2(x)+d_1^{(i)}T_1(x) \\&\equiv e_1^{(i)}T_1(x)+e_0^{(i)}T_0(x) \pmod {x^2-bx-c}, \end{aligned}$$

where \(d_1^{(i)},d_2^{(i)},e_0^{(i)},e_1^{(i)}\in \mathbb {F}_q\). Now, we aim to determine \(e_0^{(i)}\) and \(e_1^{(i)}\) explicitly. The recurrence relation implies that \(T_0(x)\) necessarily originates from \(T_2(x)\) by subtracting a proper multiple of \(x^2-bx-c\). Since \(T_2(x)\equiv bT_{1}(x)+cT_{0}(x) \pmod {x^2-bx-c}\), we have \(e_0^{(i)}=c d_2^{(i)}\). Apparently, \(d_2^{(i)}\) is a summation of monomials regarding of b and c. More precisely, suppose \(i-2\) can be expressed as an ordered sum containing \(i-2-2j\) ones and j twos. Then this ordered sum corresponds to a monomial \(b^{i-2-2j}c^j\) in the summation of \(d_2^{(i)}\). Recall that there are \(\left( {\begin{array}{c}i-2-j\\ j\end{array}}\right) \) ways to decompose \(i-2\) into distinct ordered sums containing \(i-2-2j\) ones and j twos. Therefore, we have

$$\begin{aligned} d_2^{(i)}=\sum _{j=0}^{\lfloor \frac{i-2}{2} \rfloor } {i-2-j \atopwithdelims ()j}b^{i-2-2j}c^{j}, \end{aligned}$$

and

$$\begin{aligned} e_0^{(i)}=cd_2^{(i)}=\sum _{j=0}^{\lfloor \frac{i-2}{2} \rfloor } {i-2-j \atopwithdelims ()j}b^{i-2-2j}c^{j+1}=a_0^{(i)}. \end{aligned}$$

Similarly, by analyzing the decomposition of \(i-1\) into ordered sums consisting of ones and twos, we have

$$\begin{aligned} e_1^{(i)}=\sum _{j=0}^{\lfloor \frac{i-1}{2} \rfloor } {i-1-j \atopwithdelims ()j}b^{i-1-2j}c^{j}=a_1^{(i)}. \end{aligned}$$

Consequently,

$$\begin{aligned} x^{i+1}+\frac{w}{z}x^{i}-\frac{v}{z}x-\frac{u}{z}&\equiv T_i(x)-\frac{v}{z}x-\frac{u}{z} \\&\equiv a_1^{(i)}T_1(x)+a_0^{(i)}T_0(x)-\frac{v}{z}x-\frac{u}{z} \\&\equiv a_1^{(i)}x^2+(a_0^{(i)}+\frac{wa_1^{(i)}}{z}-\frac{v}{z})x+\frac{wa_0^{(i)}}{z}-\frac{u}{z} \\&\equiv 0 \pmod {x^2-bx-c}. \end{aligned}$$

Hence, we must have \(a_1^{(i)}\ne 0\) and \(x^2+(\frac{a_0^{(i)}}{a_1^{(i)}}+\frac{w}{z}-\frac{v}{za_1^{(i)}})x+\frac{wa_0^{(i)}}{za_1^{(i)}}-\frac{u}{za_1^{(i)}}=x^2-bx-c\). The conclusion follows by comparing the coefficients. \(\square \)

Particularly, given \(\delta \in \mathbb {F}_{q^2}{\setminus } \mathbb {F}_q\) and an integer \(i\ge 2\), we have the following easy criterion to determine if \(\delta ^i=\frac{1-\theta \delta }{-\theta +\delta }\) for some \(\theta \in \mathbb {F}_q^*\).

Corollary 18

Let \(\delta \in \mathbb {F}_{q^2}{\setminus } \mathbb {F}_q\). Let \(x^2-bx-c\) be the monic minimal polynomial of \(\delta \) over \(\mathbb {F}_q\). For an integer \(i \ge 2\), \(\delta ^i=\frac{1-\theta \delta }{-\theta +\delta }\) for some \(\theta \in \mathbb {F}_q^*\) if and only if \(a_1^{(i)}\ne 0\) and one of the following condition holds

  1. 1)

    If \(a_1^{(i)}=1\), then \(a_0^{(i)}=-b\) and \(c \ne 1\),

  2. 2)

    If \(a_0^{(i)}=0\), then \(a_1^{(i)}=\frac{1}{c}\) and \(b \ne 0\),

  3. 3)

    If \(a_0^{(i)}\ne 0\) and \(a_1^{(i)}\ne 1\), then \(a_1^{(i)}c\ne 1\) and \(\frac{a_1^{(i)}b+a_0^{(i)}}{a_1^{(i)}-1}=\frac{a_1^{(i)}c-1}{a_0^{(i)}}\).

where \(a_0^{(i)}\) and \(a_1^{(i)}\) are defined in (4). Moreover, let \(\mathbb {F}_r\) be a subfield of \(\mathbb {F}_q\). If \(b,c \in \mathbb {F}_r\), then \(\delta ^i=\frac{1-\theta \delta }{-\theta +\delta }\) for some \(i\ge 2\) only if \(\theta \in \mathbb {F}_r\).

Proof

By setting \(u=z=-1\) and \(v=w=\theta \) in Proposition 17, we have \(\delta ^i=\frac{1-\theta \delta }{-\theta +\delta }\) for some \(\theta \in \mathbb {F}_q^*\) if and only if

$$\begin{aligned} b=\frac{(a_1^{(i)}-1)\theta -a_0^{(i)}}{a_1^{(i)}}, \quad c=\frac{a_0^{(i)}\theta +1}{a_1^{(i)}}. \end{aligned}$$

If \(a_0^{(i)}=0\) and \(a_1^{(i)}=1\), then we have \(b=0\) and \(c=1\), which is impossible since \(x^2-1\) is reducible over \(\mathbb {F}_q\). If either \(a_1^{(i)}=1\) or \(a_0^{(i)}=0\), then the Condition 1) or the Condition 2) holds. If \(a_0^{(i)}\ne 0\) and \(a_1^{(i)}\ne 1\), the Condition 3) is derived from the expressions of b and c. Suppose b and c belong to a subfield \(\mathbb {F}_r\), then \(a_0^{(i)},a_1^{(i)}\in \mathbb {F}_r\) by definition. Since we have either \(a_0^{(i)}\ne 0\) or \(a_1^{(i)}\ne 1\), it is easy to see that \(\theta \in \mathbb {F}_r\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Ge, G. Constructions of maximum distance separable symbol-pair codes using cyclic and constacyclic codes. Des. Codes Cryptogr. 84, 359–372 (2017). https://doi.org/10.1007/s10623-016-0271-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-016-0271-y

Keywords

Mathematics Subject Classification

Navigation