Skip to main content
Log in

The performance of RAMS in representing the convective boundary layer structure in a very steep valley

  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

Data from a comprehensive field study in the Riviera Valley of Southern Switzerland are used to investigate convective boundary layer structure in a steep valley and to evaluate wind and temperature fields, convective boundary layer height, and surface sensible heat fluxes as predicted by the mesoscale model RAMS. Current parameterizations of surface and boundary layer processes in RAMS, as well as in other mesoscale models, are based on scaling laws strictly valid only for flat topography and uniform land cover. Model evaluation is required to investigate whether this limits the applicability of RAMS in steep, inhomogeneous terrain. One clear-sky day with light synoptic winds is selected from the field study. Observed temperature structure across and along the valley is nearly homogeneous while wind structure is complex with a wind speed maximum on one side of the valley. Upvalley flows are not purely thermally driven and mechanical effects near the valley entrance also affect the wind structure. RAMS captured many of the observed boundary layer characteristics within the steep valley. The wind field, temperature structure, and convective boundary layer height in the valley are qualitatively simulated by RAMS, but the horizontal temperature structure across and along the valley is less homogeneous in the model than in the observations. The model reproduced the observed net radiation, except around sunset and sunrise when RAMS does not take into account the shadows cast by the surrounding topography. The observed sensible heat fluxes fall within the range of simulated values at grid points surrounding the measurement sites. Some of the scatter between observed and simulated turbulent sensible heat fluxes are due to sub-grid scale effects related to local topography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whiteman, C.D.: 1990, Observations of thermally developed wind systems in mountainous terrain. W. Blumen(ed.), Atmospheric Processes over Complex Terrain, Meteorol. Monogr., 23 (no. 45), Amer. Meteor. Soc., Boston, Massachusetts, Chapter 2, pp. 5–42.

    Google Scholar 

  2. Whiteman, C.D.: 1982, Breakup of temperature inversions in deep mountain valleys: Part 1. Observations, J. Appl. Meteorol.., 21, 270–289.

    Google Scholar 

  3. Freytag, C.: 1987, Results from the MERKUR experiment: Mass budget and vertical motions in a large valley during mountain and valley wind, Meteorol. Atmos. Phys. 37, 129–140.

    Google Scholar 

  4. Rotach, M.W., Calanca, P., Graziani, G., Gurtz, J., Steyn, D.G., Vogt, R., Andretta, M., Christen, A., Cieslik, S., Connolly, R., De Wekker, S.F.J., Galmarini, S., Kadygrov, E.N., Kadygrov, V., Miller, E., Neininger, B., Rucker, M., van Gorsel, E., Weber, H., Weiss A. and Zappa, M.: 2004, turbulence structure and exchange processes in an Alpine valley: The Riviera project, Bull. Amer. Meteorol. Soc. 85, 1367–1385.

    Google Scholar 

  5. Bougeault, P., Binder, P., Buzzi, A., Dirks, R., Houze, R., Kuettner, J., Smith, R.B., Steinacker, R. and Volkert, H.: 2001, The MAP special observing period, Bull. Amer. Meteorol. Soc. 82, 433–462.

    Google Scholar 

  6. Neininger, B., Fuchs, W., Bäumle, M., Volz-Thomas, A., Prévôt, A.S.H. and Dommen, J.: 2001, A small aircraft for more than just ozone: MetAir’s ‘Dimona’ after ten years of evolving development. In: Proceedings of the 11th Symposium on Meteorological Observations and Instrumentation, Albuquerque, NM, 14–19 January 2001, pp. 123–128.

  7. Furger, M., Dommen, J., Graber, W.K., Poggio, L., Prévôt, A., Emeis, S., Grell, G., Trickl, T., Gomiscek, B., Neininger, B. and Wotawa, G.: 2000, The VOTALP Mesolcina Valley Campaign 1996 — concept, background, and some highlights. Atmos. Environ. 34, 1395–1412.

    Google Scholar 

  8. Pielke, R.A., Cotton. W.R., Walko, R.L., Tremback. C.J., Lyons, W.A., Grasso, L.D., Nicholls, M.E., Moran, M.D., Wesley, D.A., Lee, T.J. and Copeland, J.H.: 1992, A comprehensive meteorological modeling system — RAMS. Meteorol. Atmos. Phys. 49, 69–91.

    Google Scholar 

  9. Cotton, W.R., Pielke Sr., R.A., Walko, R.L., Liston, G.E.:, Tremback, C.J., Jiang, H., McAnelly, R.L., Harrington, J.Y., Nicholls, M.E., Carrio, G.G. and McFadden, J.P.: 2003: RAMS 2001: Current status and future directions, Meteorol. Atmos. Phys. 82, 5–29.

    Google Scholar 

  10. Walko, R.L., Band, L.E., Baron, J., Kittel, T.G.F., Lammers, R., Lee, T.J., Ojima, D., Pielke Sr., R.A., Taylor, C., Tague, C., Tremback, C.J. and Vidale, P.L.: 2000, Coupled atmosphere-biophysics-hydrology models for environmental modeling, J. Appl. Meteorol. 39, 931–944.

    Google Scholar 

  11. Davies, H.C.: 1976, A lateral boundary formulation for multi-level prediction models, Quart. J. Roy. Meteorol. Soc. 102, 405–418.

    Google Scholar 

  12. BFS (Bundesamt für Statistik): 1993, Die Bodennutzung der Schweiz. Arealstatistik 1979/85, Bern.

  13. De Wekker, S.F.J.: 2002, Structure and Morphology of the Convective Boundary Layer in Mountainous Terrain, Ph.D. Dissertation, The University of British Columbia, BC, Canada, 191 pp.

  14. Grasso, L.D.: 2000, A numerical simulation of dryline sensitivity to soil moisture, Mon. Wea. Rev. 128, 2816–2834.

    Google Scholar 

  15. Jacobson, M.Z.: 1998, Effects of soil moisture on temperatures, winds, and pollutant concentrations in Los Angeles, J. Appl. Meteorol. 38, 607–616.

    Google Scholar 

  16. Jasper, K.: 2002, Hydrological Modelling of Alpine River Catchments Using Output Variables from Atmospheric Models, Diss. ETH No. 14385, Zurich.

  17. Zappa, M, Matzinger, N. and Gurtz, J.: 2000, Hydrological and meteorological measurements at Claro (CH) — Lago Maggiore target area in the MAP-SOP 1999 RIVIERA experiment including first evaluation. In: B. Bacchi and R. Ranzi (eds.) Hydrological Aspects in the Mesoscale Alpine Programme-SOP Experiment, Technical Report of the Dept. of Civil Engineering — Univ. of Brescia, 10(2).

  18. Frei, C. and Schär, C.: 1998, A precipitation climatology of the Alps from high-resolution rain-gauge observations, Int. J. Climatol. 18, 873–900.

    Google Scholar 

  19. Andretta, M., Weiss, A., Kljun, N. and Rotach, M.W.: 2001, Near-surface turbulent momentum flux in an Alpine valley: Observational results, MAP Newslett. 15, 122–125.

    Google Scholar 

  20. Barry, R.G.: 1992, Mountain Weather and Climate, 2nd edition, Routledge, 402 pp.

  21. Whiteman, C.D.: 2000, Mountain Meteorology, Oxford University Press, 355 pp.

  22. Stull, R.B.: 1988, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, pp. 666.

    Google Scholar 

  23. Kondratyev, J.: 1969, Radiation in the Atmosphere, Academic Press, New York, 912 pp.

    Google Scholar 

  24. Colette, A.G., Katopodes Chow, F. and Street, R.L.: 2003, A numerical study of inversion-layer breakup and the effects of topographic shading in idealized valleys, J. Appl. Meteorol. 42, 1255–1272.

    Google Scholar 

  25. Weigel, A.H. and Rotach, M.W.: 2003, On the turbulence structure in a daytime alpine valley atmosphere. In: Preprints ICAM/MAP 2003, 19–23 May 2003, Brig, Switzerland, pp. 162–165.

  26. Reiter, R., Müller, H., Sladkovic, R. and Munzert, K.: 1983, Aerologische Untersuchungen der tagesperiodischen Gebirgswinde unter besonderer Berücksichtigung des Windfeldes im Talquerschnitt. Meteorol. Rundsch. 36, 225–242.

    Google Scholar 

  27. Atkinson, B.W.: 1981: Mesoscale Atmospheric Circulations, Academic Press, London, 279 pp.

    Google Scholar 

  28. Hewson, E.W. and Gill, G.C.: 1944, Meteorological Investigations in Columbia River Valley Near Trail, B.C. Bur. Mines Bull., U.S. Department of Interior, 453, 23–228.

    Google Scholar 

  29. Hennemuth, B.: 1986, Thermal asymmetry and cross-valley circulation in a small Alpine valley, Boundary-Layer Meteorol. 36, 371–394.

    Google Scholar 

  30. Zängl, G.: 2002, An improved method for computing horizontal diffusion in a sigma-coordinate model and its application to simulations over mountainous topography, Mon. Wea. Rev. 130, 1423–1432.

    Google Scholar 

  31. Vogelezang, D.H.P. and Holtslag, A.A.M.: 1996, Evaluation and model impacts of alternative boundary-layer height formulations. Boundary-Layer Meteorol., 81, 245–269.

    Google Scholar 

  32. Seibert P., Beyrich, F., Gryning, S.E., Joffre, S., Rasmussen, A. and Tercier, P.: 1998, Mixing height determination for dispersion modelling. In: European Commission, COST Action 710 — Final Report. Harmonisation of the Pre-Processing of Meteorological Data for Atmospheric Dispersion Models, EUR 18195 EN, Part WG 2, 120 pp.

  33. Koßmann, M., Vögtlin, R., Corsmeier, U., Vogel, B., Fiedler, F., Binder, H.-J., Kalthoff, N. and Beyrich, F.: 1998, Aspects of the convective boundary layer structure over complex terrain, Atmos. Environ. 32, 1323–1348.

    Google Scholar 

  34. De Wekker, S.F.J.: 1995, The Behaviour of the Convective Boundary Layer Height over Orographically Complex Terrain. Unpublished MS Thesis University of Karlsruhe, Germany/ Wageningen Agricultural University, the Netherlands, 74 pp.

    Google Scholar 

  35. Moll, E., 1935, Aerologische Untersuchungen periodischer Gebirgswinde in V-förmigen Alpentä lern, Beitr. Physik f. Atmos. 22, 177–197.

    Google Scholar 

  36. Matzinger, N., Andretta, M., van Gorsel, E., Vogt, R., Ohmura, A. and Rotach, M.W: 2003, Surface radiation budget in an Alpine valley, Quart. J. Roy. Meteorol. Soc. 129, 877–895.

    Google Scholar 

  37. Turnipseed, A.A., Blanken, P.D., Anderson, D.E. and Monson, R.K.: 2002, Energy budget above a high-elevation subalpine forest in complex topography, Agric. For. Meteorol. 110, 177–201.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan F. J. De Wekker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Wekker, S.F.J., Steyn, D.G., Fast, J.D. et al. The performance of RAMS in representing the convective boundary layer structure in a very steep valley. Environ Fluid Mech 5, 35–62 (2005). https://doi.org/10.1007/s10652-005-8396-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-005-8396-y

Key words

Navigation