Skip to main content
Log in

Influence of the secondary motions on pollutant mixing in a meandering open channel flow

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

This paper presents large eddy simulation of turbulent flow in a meandering open channel with smooth wall and rectangular cross-section. The Reynolds number based on the channel height is 40,000 and the aspect ratio of the cross-section is 4.48. The depth-averaged mean stream-wise velocity agree well to experimental measurements. In this specific case, two interacting cells are formed that swap from one bend to the other. Transport and mixing of a pollutant is analysed using three different positions of release, e.g. on the inner bank, on the outer bank and on the centre of the cross section. The obtained depth-average mean concentration profiles are reasonably consistent with available experimental data. The role of the secondary motions in the mixing processes is the main focus of the discussion. It is found that the mixing when the scalar is released on the centre of the cross-section is stronger and faster than the mixing of the scalar released on the sides. When the position of release is close to a bank side, the mixing is weaker and a clear concentration of scalar close to the corresponding side-wall can be observed in both cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Julien PY, Duan JG (2005) Numerical simulation of the inception of channel meandering. Earth Surf Process Landf J Br Geomorphol Res Group 30:1093–1110

    Article  Google Scholar 

  2. Boussinesq J (1868) Mémoire sur l’influence des frottements dans les mouvements reguliers des fluids. J Math Pures Appl 13:377–424

    Google Scholar 

  3. Thomson J (1876) On the origin of windings of rivers in alluvial plains, with remarks on the flow of water round bends in pipes. Proc R Soc Lond 25:5–8

    Article  Google Scholar 

  4. Booij R, Tukker J (1996) 3-Dimensional laser-doppler measurements in a curved flume. In: Adrian RJ, Durão DFG, Durst F, Heitor MV, Maeda M, Whitelaw JH (eds) Developments in laser techniques and applications to fluid mechanics. Springer, Berlin, pp 98–114

    Chapter  Google Scholar 

  5. Muto Y (1997) Turbulent flow in two-stage meandering channels. Ph.D. The University of Bradford

  6. Shiono K, Muto Y (1998) Complex flow mechanisms in compound meandering channels with overbank flow. J Fluid Mech 376:221–261. doi:10.1017/S0022112098002869

    Article  Google Scholar 

  7. Tominaga A, Nagao M, Nezu I (1999) Flow structure and momentum transport processes in curved open-channels with vegetation. In: Proceedings of 28th IAHR Congress

  8. Booij R (2003) Measurements and large eddy simulations of the flows in some curved flumes. J Turbul 4:N8. doi:10.1088/1468-5248/4/1/008

    Article  Google Scholar 

  9. Jia Y, Blanckaert K, Wang SS (2001) Numerical simulation of secondary currents in curved channels. In: Proceedings of 8th FMTM-Congress

  10. Mockmore C (1943) Flow around bends in stable channels. Trans ASCE 3:334

    Google Scholar 

  11. Blanckaert K, De Vriend HJ (2004) Secondary flow in sharp open-channel bends. J Fluid Mech 498:353–380. doi:10.1017/S0022112003006979

    Article  Google Scholar 

  12. Balen WV, Uijttewaal WSJ, Blanckaert K (2009) Large-eddy simulation of a mildly curved open-channel flow. J Fluid Mech 630:413–442. doi:10.1017/S0022112009007277

    Article  Google Scholar 

  13. van Balen W, Blanckaert K, Uijttewaal WSJ (2010) Analysis of the role of turbulence in curved open-channel flow at different water depths by means of experiments, LES and RANS. J Turbul 11:N12. doi:10.1080/14685241003789404

    Article  Google Scholar 

  14. Christensen HB (1999) Secondary turbulent flow in an infinte bend. Iahr Symp. River Coast. Estuar. Morphodynamics

  15. Blanckaert K, Graf WH (2004) Momentum transport in sharp open-channel bends. J Hydraul Eng 130:186–198. doi:10.1061/(ASCE)0733-9429(2004)130:3(186)

    Article  Google Scholar 

  16. Stoesser T, Ruether N, Olsen NRB (2010) Calculation of primary and secondary flow and boundary shear stresses in a meandering channel. Adv Water Resour 33:158–170. doi:10.1016/j.advwatres.2009.11.001

    Article  Google Scholar 

  17. Blanckaert K, Duarte A, Chen Q, Schleiss AJ (2012) Flow processes near smooth and rough (concave) outer banks in curved open channels. J Geophys Res Earth Surf 117:F04020. doi:10.1029/2012JF002414

    Article  Google Scholar 

  18. Vaghefi M, Akbari M, Fiouz AR (2016) An experimental study of mean and turbulent flow in a 180 degree sharp open channel bend: secondary flow and bed shear stress. KSCE J Civ Eng 20:1582–1593. doi:10.1007/s12205-015-1560-0

    Article  Google Scholar 

  19. Kang S, Lightbody A, Hill C, Sotiropoulos F (2011) High-resolution numerical simulation of turbulence in natural waterways. Adv Water Resour 34:98–113. doi:10.1016/j.advwatres.2010.09.018

    Article  Google Scholar 

  20. Engel FL, Rhoads BL (2016) Three-dimensional flow structure and patterns of bed shear stress in an evolving compound meander bend. Earth Surf Process Landf 41:1211–1226. doi:10.1002/esp.3895

    Article  Google Scholar 

  21. Khosronejad A, Hansen AT, Kozarek JL, Guentzel K, Hondzo M, Guala M, Wilcock P, Finlay JC, Sotiropoulos F (2016) Large eddy simulation of turbulence and solute transport in a forested headwater stream. J Geophys Res Earth Surf 121:2014JF003423. doi:10.1002/2014JF003423

    Article  Google Scholar 

  22. Mera I, Franca MJ, Anta J, Peña E (2015) Turbulence anisotropy in a compound meandering channel with different submergence conditions. Adv Water Resour 81:142–151. doi:10.1016/j.advwatres.2014.10.012

    Article  Google Scholar 

  23. Termini D (2015) Momentum transport and bed shear stress distribution in a meandering bend: experimental analysis in a laboratory flume. Adv Water Resour 81:128–141. doi:10.1016/j.advwatres.2015.01.005

    Article  Google Scholar 

  24. Chang Y (1971) Lateral mixing in meandering channels. Ph.D., The University of Iowa

  25. Fischer HB (1969) The effect of bends on dispersion in streams. Water Resour Res 5:496–506. doi:10.1029/WR005i002p00496

    Article  Google Scholar 

  26. Rozovskii IL (1957) Flow of water in bends of open channels. Kiev Acad. Sci. Ukr. SSR Isr. Program Sci. Transl. Wash. DC Available Off. Tech. Serv. US Dept Commer. 1957 Ie Jerus. 1961

  27. Taylor G (1954) The dispersion of matter in turbulent flow through a pipe. Proc R Soc Lond Math Phys Eng Sci 223:446–468. doi:10.1098/rspa.1954.0130

    Article  Google Scholar 

  28. Elder JW (1959) The dispersion of marked fluid in turbulent shear flow. J Fluid Mech 5:544–560. doi:10.1017/S0022112059000374

    Article  Google Scholar 

  29. Boxall JB, Guymer I (2003) Analysis and prediction of transverse mixing coefficients in natural channels. J Hydraul Eng 129:129–139. doi:10.1061/(ASCE)0733-9429(2003)129:2(129)

    Article  Google Scholar 

  30. Demuren AO, Rodi W (1984) Calculation of turbulence-driven secondary motion in non-circular ducts. J Fluid Mech 140:189–222. doi:10.1017/S0022112084000574

    Article  Google Scholar 

  31. Sharma H, Ahmad Z (2014) Transverse mixing of pollutants in streams: a review. Can J Civ Eng 41:472–482. doi:10.1139/cjce-2013-0561

    Article  Google Scholar 

  32. Booij R (1995) Eddy laser Doppler measurements and turbulence modeling of the flow in a curved flume. In: Proceedings of 1995 ASMEJSME Fluid Eng 6 Th Int Laser Anemometry Conference on Laser Anemometry Hilton Head SC

  33. Stoesser T, Ruether N, Olsen N (2008) Near-bed flow behavior in a meandering channel. In: RiverFlow 2008 4th International Conference on Fluvial Hydraulics

  34. Kang S, Sotiropoulos F (2011) Flow phenomena and mechanisms in a field-scale experimental meandering channel with a pool-riffle sequence: insights gained via numerical simulation. J Geophys Res Earth Surf 116:F03011. doi:10.1029/2010JF001814

    Google Scholar 

  35. Xu D, Bai Y, Munjiza A, Avital E, Williams J (2013) Investigation on the characteristics of turbulent flow in a meandering open channel bend using large eddy simulation. In: Proceedings of 2013 IAHR World Congress

  36. Demuren AO, Rodi W (1986) Calculation of flow and pollutant dispersion in meandering channels. J Fluid Mech 172:63–92. doi:10.1017/S0022112086001659

    Article  Google Scholar 

  37. Breuer M, Rodi W (1994) Large-eddy simulation of turbulent flow through a straight square duct and a 180° bend. In: Voke PR, Kleiser L, Chollet J-P (eds) Direct large-eddy simulation I. Springer, Netherlands, pp 273–285

    Chapter  Google Scholar 

  38. Hinterberger C (2004) Dreidimensionale und tiefengemittelte large-eddy-simulation von Flachwasserströmungen. Ph.D., University of Karlsruhe

  39. Rhie CM, Chow WL (1983) Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J 21:1525–1532. doi:10.2514/3.8284

    Article  Google Scholar 

  40. Stone H (1968) Iterative solution of implicit approximations of multidimensional partial differential equations. SIAM J Numer Anal 5:530–558. doi:10.1137/0705044

    Article  Google Scholar 

  41. Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91:99–164. doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2

    Article  Google Scholar 

  42. Hinterberger C, Fröhlich J, Rodi W (2007) Three-dimensional and depth-averaged large-eddy simulations of some shallow water flows. J Hydraul Eng. doi:10.1061/(ASCE)0733-9429(2007)133:8(857)

    Google Scholar 

  43. Zhu J (1991) A low-diffusive and oscillation-free convection scheme. Commun Appl Numer Methods 7:225–232. doi:10.1002/cnm.1630070307

    Article  Google Scholar 

  44. Denev JA, Fröhlich J, Bockhorn H (2009) Large eddy simulation of a swirling transverse jet into a crossflow with investigation of scalar transport. Phys Fluids 21:015101. doi:10.1063/1.3054148

    Article  Google Scholar 

  45. Palau-Salvador G, García-Villalba M, Rodi W (2011) Scalar transport from point sources in the flow around a finite-height cylinder. Environ Fluid Mech 11:611–625. doi:10.1007/s10652-010-9199-3

    Article  Google Scholar 

  46. Fröhlich J, García-Villalba M, Rodi W (2007) Scalar mixing and large-scale coherent structures in a turbulent swirling jet. Flow Turbul Combust 80:47–59. doi:10.1007/s10494-007-9121-3

    Article  Google Scholar 

  47. García-Villalba M, Palau-Salvador G, Rodi W (2014) Forced convection heat transfer from a finite-height cylinder. Flow Turbul Combust 93:171–187. doi:10.1007/s10494-014-9543-7

    Article  Google Scholar 

  48. Blanckaert K, Graf WH (2001) Mean flow and turbulence in open-channel bend. J Hydraul Eng 127:835–847. doi:10.1061/(ASCE)0733-9429(2001)127:10(835)

    Article  Google Scholar 

Download references

Acknowledgements

The simulation was carried out using the supercomputing facilities of the Steinbuch Centre for Computing (SCC) of the Karlsruhe Institute of Technology. The authors would like to thank Clemens Chan-Braun for his valuable and constructive suggestions during the development of this research. MGV acknowledges the financial support of the Spanish Ministry of Education through the program Jose Castillejo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio J. Moncho-Esteve.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moncho-Esteve, I.J., Folke, F., García-Villalba, M. et al. Influence of the secondary motions on pollutant mixing in a meandering open channel flow. Environ Fluid Mech 17, 695–714 (2017). https://doi.org/10.1007/s10652-017-9513-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-017-9513-4

Keywords

Navigation