Skip to main content
Log in

Effects of freshwater leaching on potential bioavailability of heavy metals in tidal flat soils

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Leaching experiments were conducted to investigate the effects of desalination levels and sediment depths on potential bioavailability of heavy metal (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in tidal flat soils. The data showed that both the desalination levels (p < 0.001) and soil depths (p < 0.001) had significant effects on the concentrations of acid-volatile sulfide (AVS). AVS concentrations generally exhibited increasing trends with an increase in depth and decreasing trends with enhanced desalination levels. The desalination levels had significant (p < 0.05) effects on the concentrations of simultaneously extracted metal (SEM; Cd, Cr, Cu, Fe, Mn, Pb, and Zn). Moreover, the concentrations of SEM (Cd, Cr, Cu, Fe, Mn, Pb, and Zn) generally tended to decrease with an increase in the desalination level. The desalination treatment significantly reduced the ratios of SEM/AVS compared with control. However, the ratios of SEM/AVS increased with enhanced desalination levels in treatments. Results reveal that low desalination treatment is better for reducing toxicity to benthic organisms than high desalination treatment. Since these reclaimed tidal flats with low desalinisation are suitable for saline water aquaculture, transforming the present land use of reclaimed tidal flats from fresh water aquaculture into saline water aquaculture may reduce health risk of heavy metals remained in sediments. These results will also contribute to our understanding of the dynamic behavior of heavy metals in the reclamation of tidal flats during leaching and the role of the ratio of SEM/AVS predictions on assessing the ecological risks of reclaimed tidal flats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen, H. E., Fu, G., & Deng, B. (1993). Analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments. Environmental Toxicology and Chemistry, 12(13), 1441–1453.

    Article  CAS  Google Scholar 

  • Ankley, G. T., Ditoro, D. M., & Hansen, D. J. (1996). Technical basis and proposal for deriving sediment quality criteria for metals. Environmental Toxicology and Chemistry, 15(11), 2056–2066.

    Article  CAS  Google Scholar 

  • Chapman, P. M., Wang, F. Y., Janssen, C., Persoone, G., & Allen, H. E. (1998). Ecotoxicology of metals in aquatic sediments: binding and release, bioavailability, risk assessment, and remediation. Canadian Journal Fisheries and Aquatic Science, 55(23), 2221–2243.

    Article  CAS  Google Scholar 

  • Chen, W., Chen, B. B., & Fang, M. (1998). Studies on the increasing of pH value and alkalization of seashore saline soil during its desalting in Liaodong Peninsula. Journal of Nanjing Agricultural University, 21(6), 59–64.

    CAS  Google Scholar 

  • Cooper, D. C., & Morse, J. W. (1998). Extractability of metal sulfide minerals in acidic solutions: Application to environmental studies of trace metal contamination within anoxic sediments. Environmental Science and Technology, 32(3), 1076–1078.

    Article  CAS  Google Scholar 

  • Di Toro, D. M., Mahony, J. D., Hansen, D. J., Scott, K. J., Carlson, A. R., & Ankley, G. T. (1992). Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environmental Science and Technology, 26(6), 96–101.

    Article  Google Scholar 

  • Du Laing, G., Bogaert, N., Tack, F. M. G., Verloo, M. G., & Hendrickx, F. (2002). Heavy metal contents (Cd, Cu, Zn) in spiders (Pirata piraticus) living in intertidal sediments of the river Scheldt estuary (Belgium) as affected by substrate characteristics. Science of the Total Environment, 289(11), 71–81.

    Article  Google Scholar 

  • Du Laing, G., De Vos, R., Vandecasteele, B., Lesage, E., Tack, F. M. G., & Verloo, M. G. (2008). Effect of salinity on heavy metal mobility and availability in intertidal sediments of the Scheldt estuary. Estuarine Coastal and Shelf Science, 77(14), 589–602.

    Article  Google Scholar 

  • Fang, T., Li, X. D., & Zhang, G. (2005). Acid volatile sulfide and simultaneously extracted metals in the sediment cores of the Pearl River Estuary, South China. Ecotoxicology and Environmental Safety, 61(12), 420–431.

    Article  CAS  Google Scholar 

  • Gao, X. L., Li, P. M., & Chen, C. T. A. (2013). Assessment of sediment quality in two important areas of mariculture in the Bohai Sea and the northern Yellow Sea based on acid-volatile sulfide and simultaneously extracted metal results. Marine Pollution Bulletin, 72(8), 281–288.

    Article  CAS  Google Scholar 

  • Hatje, V., Payne, T. E., Hill, D. M., McOrist, G., Birch, G. F., & Szymczak, R. (2003). Kinetics of trace element uptake and release by particles in estuarine waters: effects of pH, salinity, and particle loading. Environment International, 29(11), 619–629.

    Article  CAS  Google Scholar 

  • He, J., Lü, C. W., Fan, Q. Y., Xue, H. X., & Bao, J. H. (2011). Distribution of AVS-SEM, transformation mechanism and risk assessment of heavy metals in the Nanhai Lake in China. Environmental Earth Science, 64(13), 2025–2037.

    Article  CAS  Google Scholar 

  • Jiang, M., Lu, X. G., Yang, Q., & Tong, S. Z. (2006). Iron biogeochemical cycle and its environmental effect in wetlands. Acta Pedologica Sinica, 43(7), 493–499. (in Chinese).

    Google Scholar 

  • Leung, H. M., Leung, A. O. W., Wang, H. S., Ma, K. K., Liang, Y., Ho, K. C., et al. (2014). Assessment of heavy metals/metalloid (As, Pb, Cd, Ni, Zn, Cr, Cu, Mn) concentrations in edible fish species tissue in the Pearl River Delta (PRD), China. Marine Pollution Bulletin, 78(11), 235–245.

    Article  CAS  Google Scholar 

  • Li, Q. S., Chen, X. J., Luo, X., Cui, Z. H., Shi, L., Wang, L. L., et al. (2012). Phytoavailability of heavy metals in tidal flat soils after fresh water leaching. Ecotoxicology and Environmental Safety, 79(6), 22–27.

    Article  CAS  Google Scholar 

  • Li, Q. S., Liu, Y. N., Du, Y. F., Cui, Z. H., Shi, L., Wang, L. L., et al. (2011). The behavior of heavy metals in tidal flat sediments during fresh water leaching. Chemosphere, 82(5), 834–838.

    Article  CAS  Google Scholar 

  • Li, Q. S., Wu, Z. F., Chu, B., Zhang, N., Cai, S. S., & Fang, J. H. (2007). Heavy metals in coastal wetland sediments of the Pearl River Estuary, China. Environmental Pollution, 149(7), 158–164.

    Article  CAS  Google Scholar 

  • Liu, J. C., Yan, C. L., Spencer, K. L., Zhang, R. F., & Lu, H. L. (2010). The distribution of acid-volatile sulfide and simultaneously extracted metals in sediments from a mangrove forest and adjacent mudflat in Zhangjiang Estuary, China. Marine Pollution Bulletin, 60(8), 1209–1216.

    Article  CAS  Google Scholar 

  • Long, E. R., Field, J. J., & MacDonald, D. D. (1998). Predicting toxicity in marine sediments with numerical quality guideline. Environmental Toxicology and Chemistry, 17(14), 714–727.

    Article  CAS  Google Scholar 

  • Loser, C., Zehnsdorf, A., Hoffmann, P., & Seidel, H. (2007). Remediation of heavy metal polluted sediment by suspension and solid-bed leaching: Estimate of metal removal efficiency. Chemosphere, 66(7), 1699–1705.

    Article  CAS  Google Scholar 

  • McGrath, J. A., Paquin, P. R., & Di Toro, D. M. (2002). Use of the SEM and AVS approach in predicting metal toxicity in sediments. Fact Sheet on Environmental Risk Assessment, International Council on Mining and Metals, London, UK, 10, 1–7.

    Google Scholar 

  • Nizoli, E. C., & Luiz-Silva, W. (2012). Seasonal AVS–SEM relationship in sediments and potential bioavailability of metals in industrialized estuary, southeastern Brazil. Environmental Geochemistry and Health, 34(10), 263–272.

    Article  CAS  Google Scholar 

  • Norvell, W. A., Wu, J., Hopkins, D. G., & Welch, R. M. (2000). Association of cadmium in durum wheat grain with soil chloride and chelate-extractable soil cadmium. Soil Science Society of Amercia Journal, 64(7), 2162–2168.

    Article  CAS  Google Scholar 

  • O’day, P. A., Carroll, S. A., Randall, S., Anderson, S. L., Jelinski, J., & Knezovich, J. P. (2000). Metal speciation and bioavailability in contaminated estuary sediments; Alameda naval air station, California. Environmental Science & Technology, 34(9), 3665–3673.

    Article  CAS  Google Scholar 

  • Oehm, N. J., Luben, T. J., & Ostrofsky, M. J. (1997). Spatial distribution of acid-volatile sulfur in the sediments of Canadohta Lake, PA. Hydrobiology, 345(7), 79–85.

    Article  CAS  Google Scholar 

  • Poot, A., Meerman, E., Gillissen, F., & Koelmans, A. A. (2009). A kinetic approach to evaluate the association of acid volatile sulfide and simultaneously extracted metals in aquatic sediments. Environmental Toxicology and Chemistry, 28(7), 711–717.

    Article  CAS  Google Scholar 

  • Prica, M., Dalmacija, B., Dalmacija, M., Agbaba, J., Krcmar, D., Trickovic, J., et al. (2010). Changes in metal availability during sediment oxidation and the correlation with the immobilization potential. Ecotoxicology and Environmental Safety, 73(8), 1370–1377.

    Article  CAS  Google Scholar 

  • Prica, M., Dalmacija, B., Roncevic, S., Krcmar, D., & Becelic, M. (2008). A comparison of sediment quality results with acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) ratio in Vojvodina (Serbia) sediments. Science of the Total Environment, 389(10), 235–244.

    Article  CAS  Google Scholar 

  • Tampouris, S., Papassiopi, N., & Paspaliaris, I. (2001). Removal of contaminant metals from fine grained soils, using agglomeration, chloride solutions and pile leaching techniques. Journal of Hazardous Materials, 84(23), 297–319.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(8), 844–851.

    Article  CAS  Google Scholar 

  • Van den Berg, G. A., Loch, J. P. G., Van der Heijdt, L. M., & Zwolsman, J. J. G. (1998). Vertical distribution of acid-volatile sulfide and simultaneously extracted metals in a recent sedimentation area of the river meuse in The Netherlands. Environmental Toxicology and Chemistry, 17(6), 758–763.

    Article  Google Scholar 

  • Van Griethuysen, C., Van Baren, J., Peeters, E. T. H. M., & Koelmans, A. A. (2004). Trace metal availability and effects on benthic community structure in floodplain lakes. Environmental Toxicology and Chemistry, 23(14), 668–681.

    Article  Google Scholar 

  • Yang, Y. F., Chen, F. R., Zhang, L., Liu, J. S., Wu, S. J., & Kang, M. L. (2012). Comprehensive assessment of heavy metal contamination in sediment of the Pearl River Estuary and adjacent shelf. Marine Pollution Bulletin, 64(9), 1947–1955.

    Article  CAS  Google Scholar 

  • Yin, H., & Fan, C. (2011). Dynamics of reactive sulfide and its control on metal bioavailability and toxicity in metal-polluted sediments from Lake Taihu, China. Archives of Environmental Contamination and Toxicology, 60(11), 565–575.

    Article  CAS  Google Scholar 

  • Yu, K. C., Tsai, L. J., Chen, S. H., & Ho, S. T. (2001). Chemical binding of heavy metals in anoxic river sediments. Water Research, 35(9), 4086–4094.

    Article  CAS  Google Scholar 

  • Zhang, H. G., Cui, B. S., & Zhang, K. J. (2011). Heavy metal distribution of natural and reclaimed tidal riparian wetlands in south estuary, China. Journal of Environmental Science-China, 23(10), 1937–1946.

    Article  CAS  Google Scholar 

  • Zhang, X. S., & Zhang, L. J. (2007). Acid volatile sulfide and simultaneously extracted metals in tidal flat sediments of Jiaozhou Bay, China. Journal of Ocean University of China, 6(6), 137–142.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present project was supported by the National Science and Technology Support Program of China (2012BAC07B05), the National Natural Science Foundation of China (40871154), and the Fundamental Research Funds for the Central Universities of China (21613329).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qu-Sheng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Lu, J., Li, QS. et al. Effects of freshwater leaching on potential bioavailability of heavy metals in tidal flat soils. Environ Geochem Health 38, 99–110 (2016). https://doi.org/10.1007/s10653-015-9688-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-015-9688-x

Keywords

Navigation