Skip to main content
Log in

The impacts of natural antioxidants on sclerotial differentiation and development in Rhizoctonia solani AG-1 IA

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Rhizoctonia solani AG-1 IA, the pathogen of rice sheath blight (RSB), causes severe economic losses in all rice-growing countries or regions. The sclerotia produced by R. solani AG-1 IA play an important role in the disease cycle of RSB. In this study, the influences of three natural antioxidants (quercetin, morin and catechol) on sclerotial differentiation and development in R. solani AG-1 IA were investigated. Our results showed that quercetin, morin and catechol at lower concentration caused significant inhibitory effects on sclerotial differentiation as compared with thiourea, one of the most commonly used synthetic antioxidants and an effective inhibitor of sclerotial differentiation reported previously. Specifically, 0.30 mmol/L quercetin, 0.50 mmol/L morin and 1.80 mmol/L catechol resulted in 15 days, 11 days and 7 days delay of sclerotial differentiation, respectively; 0.14 mmol/L quercetin, 0.17 mmol/L morin and 1.00 mmol/L catechol caused 45 %, 32 %, and 33 % decrease of sclerotial dry weights, respectively, when compared with the untreated control. These potent antioxidative effects demonstrate that natural antioxidants have obvious advantages over the commonly used synthetic antioxidant, thiourea. Thus, natural antioxidants may have great potentials in effectively controlling RSB and related plant diseases caused by other sclerotium-producing fungi. In addition, our results also provide strong evidences to support the theory that sclerotial differentiation in sclerotium-producing fungi is induced by oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aguirre, J., Rios-Momberg, M., Hewitt, D., & Hansberg, W. (2005). Reactive oxygen species and development in microbial eukaryotes. Trends in Microbiology, 13(3), 111–118.

    Article  CAS  PubMed  Google Scholar 

  • Blarzino, C., Mosca, L., Foppoli, C., Coccia, R., Marco, C. D., & Rosei, M. A. (1999). Lipoxygenase/−catalyzed oxidation of dihydroxyindoles: synthesis of melanin pigments and study of their antioxidant properties. Free Radical Biology & Medicine, 26, 446–453.

    Article  CAS  Google Scholar 

  • Chen, J., Wang, C., Shu, C., Zhu, M., & Zhou, E. (2015). Isolation and characterization of a melanin from Rhizoctonia solani, the causal agent of rice sheath blight. European Journal of Plant Pathology, 142(2), 281–290.

    Article  CAS  Google Scholar 

  • Corrales, M., Fernandez, A., Maria, G., Vizoso, P., Butz, P., Franz, C. M. A. P., et al. (2010). Characterization of phenolic content, in vitro biological activity, and pesticide loads of extracts from white grape skins from organic and conventional cultivars. Food and Chemical Toxicology, 48(12), 3471–3476.

    Article  CAS  PubMed  Google Scholar 

  • Du, L., Shen, Y., Zhang, X., Prinyawiwatkul, W., & Xu, Z. (2014). Antioxidant-rich phytochemicals in miracle berry (Synsepalum dulcificum) and antioxidant activity of its extracts. Food Chemistry, 153, 279–284.

    Article  CAS  PubMed  Google Scholar 

  • Duan, Y., Ge, C., Liu, S., Wang, J., & Zhou, M. (2013). A two-component histidine kinase Shk1 controls stress response, sclerotial formation and fungicide resistance in Sclerotinia sclerotiorum. Molecular Plant Pathology, 14(7), 708–718.

    Article  CAS  PubMed  Google Scholar 

  • Ellil, A. H. A. A. (1999). Oxidative stress in relation to lipid peroxidation, sclerotial development and melanin production by Sclerotium rolfsii. Journal of Phytopathology, 147(10), 561–566.

    Article  Google Scholar 

  • Ennajar, M., Bouajila, J., Lebrihi, A., Mathieu, F., Abderraba, M., Raies, A., et al. (2009). Chemical composition and antimicrobial and antioxidant activities of essential oils and various extracts of Juniperus phoenicea L. (Cupressacees). Journal of Food Science, 74(7), M364–M371.

    Article  CAS  PubMed  Google Scholar 

  • Gawlik-Dziki, U. (2012). Dietary spices as a natural effectors of lipoxygenase, xanthine oxidase, peroxidase and antioxidant agents. LWT - Food Science and Technology, 47(1), 138–146.

    Article  CAS  Google Scholar 

  • Georgiou, C. D. (1997). Lipid peroxidation in Sclerotium rolfsii: a new look into the mechanism of sclerotial biogenesis in fungi. Mycological Research, 101(4), 460–464.

    Article  CAS  Google Scholar 

  • Georgiou, C. D., & Petropoulou, K. P. (2001a). Effect of the antioxidant ascorbic acid on sclerotial differentiation in Rhizoctonia solani. Plant Pathology, 50(5), 594–600.

    Article  CAS  Google Scholar 

  • Georgiou, C. D., & Petropoulou, K. P. (2001b). Role of erythroascorbate and ascorbate in sclerotial differentiation in Sclerotinia sclerotiorum. Mycological Research, 105(11), 1364–1370.

    Article  CAS  Google Scholar 

  • Georgiou, C. D., & Petropoulou, K. P. (2001c). The role of ascorbic acid role in the differentiation of sclerotia in Sclerotinia minor. Mycopathologia, 154(2), 71–77.

    Article  Google Scholar 

  • Georgiou, C. D., & Zees, A. (2002). Lipofuscins and sclerotial differentiation in phytopathogenic fungi. Mycopathologia, 153(4), 203–208.

    Article  CAS  PubMed  Google Scholar 

  • Georgiou, C. D., Tairis, N., & Sotiropoulou, A. (2000). Hydroxyl radical scavengers inhibit sclerotial differentiation and growth in Sclerotinia sclerotiorum and Rhizoctonia solani. Mycological Research, 104(10), 1191–1196.

    Article  CAS  Google Scholar 

  • Georgiou, C. D., Tairis, N., & Polycratis, A. (2001a). Production of β-carotene by Sclerotinia sclerotiorum and its role in sclerotium differentiation. Mycological Research, 105(9), 1110–1115.

    Article  CAS  Google Scholar 

  • Georgiou, C. D., Zervoudakis, G., Tairis, N., & Kornaros, M. (2001b). β-carotene production and its role in sclerotial differentiation of Sclerotium rolfsii. Fungal Genetics and Biology, 34(1), 11–20.

    Article  CAS  PubMed  Google Scholar 

  • Georgiou, C. D., Zervoudakis, G., & Petropoulou, K. P. (2003). Ascorbic acid might play a role in the sclerotial differentiation of Sclerotium rolfsii. Mycologia, 95(2), 308–316.

    Article  CAS  PubMed  Google Scholar 

  • Georgiou, C. D., Patsoukis, N., Papapostolou, L., & Zervoudakis, G. (2006). Sclerotial metamorphosis in filamentous fungi is induced by oxidative stress. Integrative and Comparative Biology, 46(6), 691–712.

    Article  CAS  PubMed  Google Scholar 

  • Gordon, M. H., & Roedig-Penman, A. (1998). Antioxidant activity of quercetin and myricetin in liposomes. Chemistry and Physics of Lipids, 97, 79–85.

    Article  CAS  PubMed  Google Scholar 

  • Habsah, M., Amran, M., Mackeen, M. M., Lajis, N.H., Kikuzaki, H., Nakatani, N., Rahman, A. A., Ghafar, Ali, A.M. (2000). Screening of Zingiberaceae extracts for antimicrobial and antioxidant activities. Journal of Ethnopharmacology 72 (3): 403–410.

  • Halliwell, B., & Gutteridge, C. J. M. (1999). Free radicals in biology and medicine. Oxford.: Claredon Press.

    Google Scholar 

  • Han, J., Zhao, W., Gao, Y., & Yuan, J. (2005). Effect of oxidative stress and exogenous b-carotene on sclerotial differentiation and carotenoid yield of Penicillium sp. PT95. Letters in Applied Microbiology, 40, 412–417.

    Article  CAS  PubMed  Google Scholar 

  • Huang, S., Wang, L., Chen, H., Wang, Q., & Zhu, D. (2009). Effect of nitrogen dosage and fertilization approach on the occurrence of sheath blight disease in superhybrid rice. Acta Phytopathologica Sinica, 39(1), 104–109.

    Google Scholar 

  • Husain, S. R., Cillard, J., & Cillard, P. (1987). Hydroxyl radical scavenging activity of flavonoids. Phytochemistry, 26(9), 2489–2491.

    Article  CAS  Google Scholar 

  • Khodayari, M., Safaie, N., & Shamsbakhsh, M. (2009). Genetic diversity of Iranian AG1-IA isolates of Rhizoctonia solani, the cause of rice sheath blight, using morphological and molecular markers. Journal of Phytopathology, 157, 708–714.

    Article  CAS  Google Scholar 

  • Krishnaiah, D., Sarbatly, R., & Nithyanandam, R. (2011). A review of the antioxidant potential of medicinal plant species. Food and Bioproducts Processing, 89(3), 217–233.

    Article  CAS  Google Scholar 

  • Lara-Ortíz, T., Riveros-Rosas, H., & Aguirre, J. (2003). Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans. Molecular Microbiology, 50(4), 1241–1255.

    Article  PubMed  Google Scholar 

  • Lee, F. N., & Rush, M. C. (1983). Rice sheath blight: a major rice disease. Plant Disease, 67(7), 829–832.

    Article  Google Scholar 

  • Linde, C. C., Zala, M., Paulraj, R. S. D., McDonald, B. A., Gnanamanickam, S. S., et al. (2005). Population structure of the rice sheath blight pathogen Rhizoctonia solani AG-1 IA from India. European Journal of Plant Pathology, 112, 113–121.

    Article  CAS  Google Scholar 

  • Liu, H., Mou, Y., Zhao, J. L., Wang, J. H., Zhou, L. G., Wang, M. G., et al. (2010). Flavonoids from Halostachys caspica and their antimicrobial and antioxidant activities. Molecules, 15, 7933–7945.

    Article  CAS  PubMed  Google Scholar 

  • Moridani, M. Y., & O’Brien, P. J. (2001). Iron complexes of deferiprone and dietary plant catechols as cytoprotective superoxide radical scavengers. Biochemical Pharmacology, 62, 1579–1585.

    Article  CAS  PubMed  Google Scholar 

  • Ogoshi, A. (1996). The genus Rhizoctonia. In B. Sneh, S. Jabaji-Hare, S. Neate, & G. Dijst (Eds.), Rhizoctonia species: Taxonomy, molecular biology, ecology, pathology and disease control (pp. 1–10). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Özgen, U., Houghton, P. J., Ogundipe, Y., & Coskun, M. (2003). Antioxidant and antimicrobial activities of Onosma argentatum and Rubia peregrina. Fitoterapia, 74(7–8), 682–685.

    Article  PubMed  Google Scholar 

  • Papapostolou, I., & Georgiou, C. D. (2010). Hydrogen peroxide is involved in the sclerotial differentiation of filamentous phytopathogenic fungi. Journal of Applied Microbiology, 109, 1929–1936.

    Article  CAS  PubMed  Google Scholar 

  • Patsoukis, N., & Georgiou, C. D. (2007a). Effect of glutathione biosynthesis-related modulators on the thiol redox state enzymes and on sclerotial differentiation of filamentous phytopathogenic fungi. Mycopathologia, 163(6), 335–347.

    Article  CAS  PubMed  Google Scholar 

  • Patsoukis, N., & Georgiou, C. D. (2007b). Effect of sulfite–hydrosulfite and nitrite on thiol redox state, oxidative stress and sclerotial differentiation of filamentous phytopathogenic fungi. Pesticide Biochemistry and Physiology, 88(2), 226–235.

    Article  CAS  Google Scholar 

  • Patsoukis, N., & Georgiou, C. D. (2007c). Effect of thiol redox state modulators on oxidative stress and sclerotial differentiation of the phytopathogenic fungus Rhizoctonia solani. Archives of Microbiology, 188(3), 225–233.

    Article  CAS  PubMed  Google Scholar 

  • Patsoukis, N., & Georgiou, C. D. (2007d). Thiol redox state and oxidative stress affect sclerotial differentiation of the phytopathogenic fungi Sclerotium rolfsii and Sclerotinia sclerotiorum. Journal of Applied Microbiology, 104, 42–50.

    PubMed  Google Scholar 

  • Patsoukis, N., & Georgiou, C. D. (2008). Thiol redox state and related enzymes in sclerotium-forming filamentous phytopathogenic fungi. Mycological Research, 112(5), 602–610.

    Article  CAS  PubMed  Google Scholar 

  • Pietta, P. G. (2000). Flavonoids as antioxidants. Journal of Natural Products, 63(7), 1035–1042.

    Article  CAS  PubMed  Google Scholar 

  • Proestos, C., Boziaris, I. S., Kapsokefalou, M., et al. (2008). Natural antioxidant constituents from selected aromatic plants and their antimicrobial activity against selected pathogenic microorganisms. Food Technology and Biotechnology, 46(2), 151–156.

    CAS  Google Scholar 

  • Rozanowska, M., Sarna, T., Land, E. J., & Truscott, G. (1999). Free radical scavenging properties of melanin interaction of Eu- and Pheo-melanin models with reducing and oxidising radicas. Free Radical Biology & Medicine, 26, 518–525.

    Article  CAS  Google Scholar 

  • Shah, M. A., Bosco, S. J. D., & Mir, S. A. (2014). Plant extracts as natural antioxidants in meat and meat products. Meat Science, 98(1), 21–33.

    Article  CAS  PubMed  Google Scholar 

  • Shu, C., Sun, S., Chen, J., Chen, J., & Zhou, E. (2014). Comparison of different methods for total RNA extraction from sclerotia of Rhizoctonia solani. Electronic Journal of Biotechnology, 17(1), 50–54.

    Article  Google Scholar 

  • Shu, C., Chen, J., Sun, S., Zhang, M., Wang, C., & Zhou, E. (2015). Two distinct classes of protein related to GTB and RRM are critical in the sclerotial metamorphosis process of Rhizoctonia solani AG-1 IA. Functional & Integrative Genomics, 15(4), 449–459.

    Article  CAS  Google Scholar 

  • Sindhi, V., Gupta, V., Sharma, K., Bhatnagar, S., Kumari, R., & Dhaka, N. (2013). Potential applications of antioxidants–a review. Journal of Pharmacy Research, 7(9), 828–835.

    Article  CAS  Google Scholar 

  • Škerget, M., Kotnik, P., Hadolin, M., Hraš, A. R., Simonič, M., & Knez, Ž. (2005). Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chemistry, 89(2), 191–198.

    Article  Google Scholar 

  • Su, B. L., Zeng, R., Chen, J. Y., Chen, C. Y., Guo, J. H., & Huang, C. G. (2012). Antioxidant and antimicrobial properties of various solvent extracts from Impatiens balsamina L. Stems.". Journal of Food Science, 77(6), C614–C619.

    Article  CAS  PubMed  Google Scholar 

  • Tan, W. Z., Zhang, W., Ou, Z. Q., Li, C. W., Zhou, G. J., Wang, Z. K., et al. (2007). Analyses of the temporal development and yield losses due to sheath blight of rice (Rhizoctonia solani AG1.1a). Agricultural Sciences in China, 6(9), 1074–1081.

    Article  Google Scholar 

  • Vilaça, R., Mendes, V., Mendes, M. V., Carreto, L., Amorim, M. A., Freitas, V. D., et al. (2012). Quercetin protects Saccharomyces cerevisiae against oxidative stress by inducing trehalose biosynthesis and the cell wall integrity pathway. PloS One, 7(9), e45494.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, S., Melnyk, J. P., Tsao, R., & Marcone, M. F. (2011). How natural dietary antioxidants in fruits, vegetables and legumes promote vascular health. Food Research International, 44(1), 14–22.

    Article  CAS  Google Scholar 

  • Wu, W., Liao, Y., Shah, F., Nie, L., Peng, S., Cui, K., et al. (2013). Plant growth suppression due to sheath blight and the associated yield reduction under double rice-cropping system in Central China. Field Crops Research, 144, 268–280.

    Article  Google Scholar 

  • Xing, Y., Chen, J., Song, C., Liu, Y., Guo, S., & Wang, C. (2013). Nox gene expression and cytochemical localization of hydrogen peroxide in Polyporus umbellatus sclerotial formation. International Journal of Molecular Sciences, 14, 22967–22981.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, T., Yao, F., Liang, W., Li, Y., Li, D., Wang, H., et al. (2012). Involvement of alternative oxidase in the regulation of growth, development, and resistance to oxidative stress of Sclerotinia sclerotiorum. Journal of Microbiology, 50(4), 594–602.

    Article  CAS  Google Scholar 

  • Yang, Y., Yang, M., Li, M., & Zhou, E. (2012). Cloning and functional analysis of an endo-PG-encoding gene Rrspg1 of Rhizoctonia solani, the causal agent of rice sheath blight. Canadian Journal of Plant Pathology, 34(3), 436–447.

    Article  CAS  Google Scholar 

  • Zervoudakis, G., Tairis, N., Salahas, G., & Georgiou, C. D. (2003). β-carotene production and sclerotial differentiation in Sclerotinia minor. Mycological Research, 107(5), 624–631.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z., Zhao, W., Long, D., Niu, L., & Han, J. (2014). Effect of copper-induced oxidative stress on sclerotial differentiation and antioxidant properties of Penicillium thomii PT95 strain. World Journal of Microbiology and Biotechnology, 30(5), 1519–1525.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, D., & An, X. (2004). Progress and development trend of researches on plant antioxidants. Chemistry and Industry of Forest Products, 24(3), 113–118.

    CAS  Google Scholar 

  • Zheng, A., Lin, R., Zhang, D., Qin, P., Xu, L., Ai, P., et al. (2013). The evolution and pathogenic mechanisms of the rice sheath blight pathogen. Nature Communications, 4, 1424.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhi, T., & Huang, Q. (2009). The research development on the bioactivities of morin. Chinese Medicine Modern Distant Education of China, 7(3), 112–115.

    Google Scholar 

  • Zhu, B., Antholine, W. E., & Frei, B. (2002). Thiourea protects against copper-induced oxidative damage by formation of a redox-inactive thiourea-copper complex. Free Radical Biology and Medicine, 32(12), 1333–1338.

    Article  CAS  PubMed  Google Scholar 

  • Zuo, S., Zhang, Y., Chen, Z., Jiang, W., Feng, M., & Pan, X. (2014). Improvement of rice resistance to sheath blight by pyramiding QTLs conditioning disease resistance and tiller angle. Rice Science, 21(6), 318–326.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Natural Science Foundation of China (Grant No. 31271994) awarded to Erxun Zhou.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erxun Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Shu, C., Liu, C. et al. The impacts of natural antioxidants on sclerotial differentiation and development in Rhizoctonia solani AG-1 IA. Eur J Plant Pathol 146, 729–740 (2016). https://doi.org/10.1007/s10658-016-0953-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-0953-3

Keywords

Navigation