Skip to main content
Log in

Similar infection process and induced defense patterns during compatible interactions between Zymoseptoria tritici and both bread and durum wheat species

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Bread wheat (BW) and durum wheat (DW) are both strongly affected by Septoria tritici blotch caused by the hemibiotrophic fungus Zymoseptoria tritici. However, only the BW-Z. tritici pathosystem has been well studied so far. Here, we compared compatible interactions between Z. tritici and both BW and DW species at the cytological, biochemical and molecular levels. Fungal infection process investigations showed close spore germination and leaf penetration features in both interactions, although differences in the patterns of these events were observed. During the necrotrophic phase, disease severity and sporulation levels were associated in both interactions with increases of the two cell-wall degrading enzyme activities endo-β-1,4-xylanase and endo-β-1,3-glucanase as well as protease. An analysis of plant defense responses during the first five days post inoculation revealed inductions of GLUC, Chi4, POX and PAL and a repression of LOX gene expressions in both wheat species, although differences in kinetics and levels of induction or repression were observed. In addition, peroxidase, catalase, glucanase, phenylalanine ammonia-lyase and lipoxygenase activities were induced in both wheat species, while only weak accumulations of hydrogen peroxide and polyphenols were detected at the fungal penetration sites. Our study revealed overall a similarity in Z. tritici infection process and triggered wheat defense pathways on both pathosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adhikari, T. B., Balaji, B., Breeden, J., & Goodwin, S. B. (2007). Resistance of wheat to Mycosphaerella graminicola involves early and late peaks of gene expression. Physiological and Molecular Plant Pathology, 71, 55–68.

    Article  CAS  Google Scholar 

  • Berraies, S., Gharbi, M. S., Rezgui, S., & Yahyaoui, A. (2014). Estimating grain yield losses caused by septoria leaf blotch on durum wheat in Tunisia. Chilean Journal of Agricultural Research, 74(4), 432–437.

    Article  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, L., & Eyal, Z. (1993). The histology of processes associated with the infection of resistant and susceptible wheat cultivars with Septoria tritici. Plant Pathology, 42, 737–743.

    Article  Google Scholar 

  • Cohen-Kupiec, R., & Chet, I. (1998). The molecular biology of chitin digestion. Current Opinion of Biotechnology, 9, 270–277.

    Article  CAS  Google Scholar 

  • Deller, S., Hammond-Kosack, K. E., & Rudd, J. J. (2011). The complex interactions between host immunity and non-biotrophic fungal pathogens of wheat leaves. Journal of Plant Physiology, 168, 63–71.

    Article  CAS  PubMed  Google Scholar 

  • Diani, Z., Ouarraqi, E. M., Aissam, S., Hsissou, D., & Modafar, C. E. (2009). Induction of early oxidative events in soft wheat leaves inoculated with Septoria tritici and their relationship to resistance of Moroccan cultivars. International Journal of Agriculture and Biology, 11, 351–359.

    CAS  Google Scholar 

  • Douaiher, M. N., Nowak, E., Durand, R., Halama, P., & Reignault, P. (2007). Correlative analysis of Mycosphaerella graminicola pathogenicity and cell wall degrading enzymes produced in vitro: the importance of xylanases and polygalacturonases. Plant Pathology, 56, 79–86.

    Article  CAS  Google Scholar 

  • Duncan, K. E., & Howard, R. J. (2000). Cytological analysis of wheat infection by the leaf blotch pathogen Mycosphaerella graminicola. Mycological Research, 104, 1074–1082.

    Article  Google Scholar 

  • El Hadrami, I., & Baaziz, M. (1995). Somatic embryogenesis and analysis of peroxidases in Phoenix dactylifera L. Biologia Plantarum, 37, 197–203.

    Article  CAS  Google Scholar 

  • El Hadrami, I., Ramos, T., El Bellaj, M., El Idrissi-Tourane, A., & Macheix, J. J. (1997). A sinapic derivative as an induced defense compound of date palm against Fusarium oxysporum f. Sp. albedinis, the agent causing bayoud disease. Journal of Phytopathology, 145, 329–333.

    Article  CAS  Google Scholar 

  • Eyal, Z. (1999). The septoria tritici and stagonospora nodorum blotch diseases of wheat. European Journal of Plant Pathology, 105, 629–641.

    Article  Google Scholar 

  • Farsad, L. K., Mardi, M., & Ebrahimi, M. A. (2013). Quantitative expression analysis of candidate genes for Septoria Tritici blotch resistance in wheat (Triticum aestivum L.). Progress in Biological Sciences, 3(1), 72–78.

    Google Scholar 

  • Goodwin, S. B., Ben M’Barek, S., Dhillon, B., Wittenberg, A. H. J., Crane, C. F., Hane, J. K., et al. (2011). Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLoS Genetics, 7(6), e1002070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gouache, D., Bensadoun, A., Brunc, F., Pagéd, C., Makowskie, D., & Wallachf, D. (2013). Modelling climate change impact on Septoria Tritici blotch (STB) in France: accounting for climate model and disease model uncertainty. Agricultural and Forest Meteorology, 170, 242–252.

    Article  Google Scholar 

  • Hellweg, M. (2003). Molecular biological and biochemical studies of proteolytic enzymes of the cereal pathogen Fusarium graminearum. Bremen, Deutschland: Westfälischen Wilhelms-Universität Münster, Dissertation des Doktorgrades.

    Google Scholar 

  • Jones, J. D., & Dang, J. L. (2006). The plant immune system. Nature, 444, 323–329.

    Article  CAS  PubMed  Google Scholar 

  • Kema, G. H. J., Yu, D., Rijkenberg, F. H. J., Shaw, M. W., & Baayen, R. P. (1996). Histology of the pathogenesis of Mycosphaerella graminicola in wheat. Phytopathology, 86, 777–786.

    Article  Google Scholar 

  • Keon, J., Antoniw, J., Carzaniga, R., Deller, S., Ward, J. L., Baker, J. M., et al. (2007). Transcriptional adaptation of Mycosphaerella graminicola to programmed cell death (PCD) of its susceptible wheat host. Molecular Plant-Microbe Interactions, 20(2), 178–193.

    Article  CAS  PubMed  Google Scholar 

  • Lee, W.-S., Rudd, J. J., Hammond-Kosack, K. E., & Kanyuka, K. (2014). Mycosphaerella graminicola LysM effector-mediated stealth pathogenesis subverts recognition through both CERK1 and CEBiP homologues in wheat. Molecular Plant-Microbe Interactions, 27(3), 236–243.

    Article  CAS  PubMed  Google Scholar 

  • Marshall, R., Kombrink, A., Motteram, J., Loza-Reyes, E., Lucas, J., Hammond-Kosack, K. E., et al. (2011). Homologs from the fungus Mycosphaerella graminicola reveals novel functional properties and varying contributions to virulence on wheat. Plant Physiology, 156(2), 756–769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauch, F., Mauch-Mani, B., & Boller, T. (1988). Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase and a β-1,3-glucanase. Plant Physiology, 88, 936–942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer, C., & Skinner, W. (2002). Mycosphaerella graminicola: latent infection, crop devastation and genomics. Molecular Plant Pathology, 3, 63–70.

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl, M. W., Horgan, G. W., & Dempfle, L. (2002). Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 30(9), 36.

    Article  Google Scholar 

  • Quaedvlieg, W., Kema, G. H. J., Groenewald, J. Z., Verkley, G. J. M., Seifbarghi, S., Razavi, M., et al. (2011). Zymoseptoria gen. nov.: a new genus to accommodate Septoria-like species occurring on graminicolous hosts. Persoonia, 26, 57–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Randoux, B., Renard-Merlier, D., Mulard, G., Mulard, G., Duyme, F., Sanssené, J., et al. (2010). Distinct defenses induced in wheat against powdery mildew by acetylated and nonacetylated oligogalacturonides. Phytopathology, 100(13), 1552–1563.

    Google Scholar 

  • Ray, S., Anderson, J. M., Urmeev, F. I., & Goodwin, S. B. (2003). Rapid induction of a protein disulfide isomerase and defense related genes in wheat in response to the hemibiotrophic fungal pathogen Mycosphaerella graminicola. Plant Molecular Biology, 53, 701–714.

    Article  CAS  PubMed  Google Scholar 

  • Rohel, E. A., Payne, A. C., Fraaije, B. A., & Hollomon, D. W. (2001). Exploring infection of wheat and carbohydrate metabolism in Mycosphaerella graminicola transformants with differentially regulated green fluorescent protein expression. Molecular Plant-Microbe Interactions, 14, 1–7.

    Article  Google Scholar 

  • Rudd, J. J., Kanyuka, K., Hassani-Pak, K., Derbyshire, M., Andogabo, A., & Devonshire, J. (2015). Transcriptome and metabolite profiling the infection cycle of Zymoseptoria tritici on wheat (Triticum aestivum) reveals a biphasic interaction with plant immunity involving differential pathogen chromosomal contributions, and a variation on the hemibiotrophic lifestyle definition. Plant Physiology. doi:10.1104/pp.114.255927.

    PubMed  PubMed Central  Google Scholar 

  • Shetty, N. P., Kristensen, B. K., Newman, M.-A., Møller, K., Gregersen, P. L., & Jørgensen, H. J. L. (2003). Association of hydrogen peroxide with restriction of Septoria tritici in resistant wheat. Physiological and Molecular Plant Pathology, 62, 333–346.

    Article  CAS  Google Scholar 

  • Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y., & Hunt, M. D. (1996) Systemic acquired resistance. Plant Cell 8, 1809–1819.

  • Shetty, N. P., Mehrabi, R., Lütken, H., Haldrup, A., Kema, G. H. J., Collinge, D. B., et al. (2007). Role of hydrogen peroxide during the interaction between the hemibiotrophic fungal pathogen Septoria tritici on wheat. New Phytologist, 174, 637–647.

    Article  CAS  PubMed  Google Scholar 

  • Shetty, N. P., Jensen, J. D., Knudsen, A., Finnie, C., Geshi, N., Blennow, A., et al. (2009). Effects of β-1,3-glucan from Septoria tritici on structural defense responses in wheat. Journal of Experimental Botany, 60(15), 4287–4300.

    Article  CAS  PubMed  Google Scholar 

  • Siah, A., Deweer, C., Duyme, F., Sanssené, J., Durand, R., Halama, P., et al. (2010). Correlation of in planta endo-beta-1,4-xylanase activity with the necrotrophic phase of the hemibiotrophic fungus Mycosphaerella graminicola. Plant Pathology, 59, 661–670.

    Article  Google Scholar 

  • Tayeh, C., Randoux, B., Bourdon, N., & Reignault, P. (2013). Lipid metabolism is differentially modulated by salicylic acid and heptanoyl salicylic acid during the induction of resistance in wheat against powdery mildew. Journal of Plant Physiology, 170, 1620–1629.

    Article  CAS  PubMed  Google Scholar 

  • Tayeh, C., Randoux, B., Tisserant, B., Khong, G., Jacques, P., & Reignault, P. (2015). Are ineffective defense reactions potential target for induced resistance during the compatible wheat-powdery mildew interaction? Plant Biology and Biochemistry, 96, 9–19.

    CAS  Google Scholar 

  • Tian, S. M., Weinert, J., & Zhao, Q. H. (2009). Correlation between cell wall-degrading enzymes in wheat leaves infected by Septoria tritici and disease severity. Canadian Journal of Plant Pathology, 31, 387–392.

    Article  CAS  Google Scholar 

  • Weber, G. F. (1922). Septoria diseases of cereals. II. Septoria diseases of wheat. Phytopathology, 12(12), 537–585.

    Google Scholar 

  • Yang, F., Li, W., & Jørgensen, H. J. L. (2013). Transcriptional reprogramming of wheat and the hemibiotrophic pathogen Septoria tritici during two phases of the compatible interaction. PloS One, 8(11), 1–15.

    Google Scholar 

Download references

Acknowledgment

Lamia Somai-Jemmali was supported by Campus France for internships in Institut Supérieur d’Agriculture (Lille, France) and Université du Littoral Côte d’Opale (Calais, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lamia Somai-Jemmali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somai-Jemmali, L., Randoux, B., Siah, A. et al. Similar infection process and induced defense patterns during compatible interactions between Zymoseptoria tritici and both bread and durum wheat species. Eur J Plant Pathol 147, 787–801 (2017). https://doi.org/10.1007/s10658-016-1043-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-1043-2

Keywords

Navigation