Skip to main content
Log in

Two-dimensional finite elements model for selenium transport in saturated and unsaturated zones

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A two-dimensional finite element model was developed to simulate species of selenium transport in two dimensions in both saturated and unsaturated soil zones. The model considers water, selenate, selenite, and selenomethionine uptake by plants. It also considers adsorption and desorption, oxidation and reduction, volatilization, and chemical and biological transformations of selenate, selenite, and selenomethionine. In addition to simulating water flow, selenate, selenite, and selenomethionine transport, the model also simulates organic and gaseous selenium transport. The developed model was applied to simulate two different observed field data. The simulation of the observed data was satisfactory, with mean absolute error of 48.5 μg/l and mean relative error of 8.9%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adriano, D. C. (1986). Trace element in terrestrial environment (Chapter 12). New York: Springer.

    Google Scholar 

  • Ahlrichs, J. S., & Hossner, L. R. (1987). Selenate and selenite mobility in overburden by saturated flow. Journal of Environmental Quality, 16, 95–98.

    Article  CAS  Google Scholar 

  • Alemi, M. H., Goldhamer, D. A., & Nielson, D. R. (1988). Selenate transport in steady-state water saturated soil columns. Journal of Environmental Quality, 17, 608–613.

    Article  CAS  Google Scholar 

  • Alemi, M. H., Goldhamer, D. A., & Nielson, D. R. (1991). Modeling selenium transport in steady-state, unsaturated soil columns. Journal of Environmental Quality, 20, 89–95.

    Article  CAS  Google Scholar 

  • Alloway, B. J. (1995). Heavy metals in soils (2nd ed.). Glasgow: Blackie Academic.

    Google Scholar 

  • Balistrieri, L. S., & Chao, T. T. (1987). Selenium adsorption by goethite. Soil Science Society of America Journal, 51, 1145–1151.

    Article  CAS  Google Scholar 

  • Biggar, J. W., & Jayaweera (1990). Soil–water vegetation management studies of selenium in Kesterson Restoration and Contaminant Project, December 1990.

  • Bujdos, M., Mulova, A., Kubova, J., & Medved, J. (2005). Selenium fractionation and speciation in rocks, soils, waters and plants in polluted surface mine environment. Environmental Geology, 47, 353–360.

    Article  CAS  Google Scholar 

  • Carter, D. L., Robbins, C. W., & Brown, M. J. (1972). Effect of phosphorous fertilization on the selenium concentration in alfalfa (Medicago sativa). Soil Science Society American Proceedings, 36, 624–628.

    Article  CAS  Google Scholar 

  • Cary, E. E., & Allaway, W. H. (1969). The solubility of different forms of selenium applied to low selenium soils. Soil Science Society of America Journal, 33, 571–574.

    Article  CAS  Google Scholar 

  • Cervinka, V. (1987). Agroforestry systems for the management of drain water in the San Joaquin Valley of California. Presented at the ASAE Pacific Region Meeting, Tucson, AZ, p. 6.

  • Cooke, T. D., & Bruland, K. W. (1987). Aquatic chemistry of selenium: Evidence of biomethylation. Environmental Science (Technical), 21, 1214–1219.

    Article  Google Scholar 

  • Deveral, S. J., & Fujii, R. (1988). Processes affecting the distribution of selenium in shallow ground water of agricultural areas, Western San Joaquin Valley, California. Water Resources Research, 24, 516–524.

    Article  Google Scholar 

  • Deverel, S. J., Gilliom, R. J., Fujii, R., Izbickii, J. A., & Fields, J. C. (1984). A real distribution of selenium and other inorganic constituents in shallow ground water of the San Luis Drain Service Area, San Joaquin Valley, California: A preliminary study. In Water Research Investigation Report 84, 4319 (p. 67). Reston: US Geological Survey.

    Google Scholar 

  • Deveral, S. J., & Milliard, S. P. (1988). Distribution and mobility of selenium and their trace elements in shallow ground water of Western San Joaquin Valley. Environmental Science & Technology, 22, 697–702.

    Article  Google Scholar 

  • Dungan, R. S., & Frankenberger, Jr., W. T. (1999). Microbial transformations of selenium and the bioremediation of seleniferous environments. Bioremediation Journal, 3, 171–188.

    Article  CAS  Google Scholar 

  • Fio, J. L., & Fujii, R. (1990). Selenium speciation methods and application to soil saturation extracts from San Joaquin Valley, California. Soil Science Society of America Journal, 54, 363–369.

    Article  CAS  Google Scholar 

  • Fio, J. L., Fujii, R., & Deveral, S. J. (1990). Evaluation of selenium mobility in soil using sorption experiments and a numerical model, Western San Joaquin Valley, California. USGS Open File Report 90–135, p. 38. Sacramento, CA.

  • Frankenberger, W. T., & Benson, S. (1994). Selenium in environment. New York: Marcel Dekker.

    Google Scholar 

  • Frankenberger, W. T., & Engberg, R. A. (1998). Environmental chemistry of selenium. New York: Marcel Dekker.

    Google Scholar 

  • Fujii, R., Deveral, S. J., & Hayfield, D. B. (1988). Distribution of selenium in soils of agricultural fields, Western San Joaquin Valley, California. Soil Science Society of America Journal, 52, 1274–1283.

    Article  CAS  Google Scholar 

  • Girling, C. A. (1984). Selenium in agriculture and the environment. Agriculture, Ecosystems and Environment, 11, 37–65.

    Article  CAS  Google Scholar 

  • Gissler-Nielson, G. (1973). Uptake and distribution of added selenite and selenate by barley and red clover as influenced by sulfur. Journal of the Science of Food and Agriculture, 24, 749–755.

    Google Scholar 

  • Gissler-Nielson, G. (1976). Selenium in soils and plants. In Proc. sympos. On selenium and telluvium in environment, Notre Dane, Indiana, USA.

  • Goldschmit, V. M. (1954). Geochemistry. NJ: Oxford University Press.

    Google Scholar 

  • Hamdy, A. A., & Gissel-Nielson, G. (1977). Fixation of selenium by clay minerals and iron oxides. Zeitschrift für Pflanzenernährung und Bodenkunde, 140, 63–70.

    Article  CAS  Google Scholar 

  • Hutson, J. L., & Wagenet, R. J. (1989). Leaching estimation and chemistry model, a process-based model of water and solute movement, transformations, plant uptake and chemical reactions in the unsaturated zone (p. 148). Ithaca: Cornell University.

    Google Scholar 

  • Johnson, C. M., Asher, C. J., & Broyer, T. C. (1967). In O. J. Muth (Ed.), Selenium in biomedicine. Westport: AVI.

    Google Scholar 

  • Karajeh, F. F., Tanji, K. K., & King, I. P. (1994). Agroforestry drainage management model. I: Theory and validation. Journal of Irrigation and Drainage Engineering, ASCE, 120(2), 363–381.

    Article  Google Scholar 

  • Karlson, U., & Frankenberger, W. T. (1989). Accelerated rates of selenium volatilization from California soils. Soil Science Society of America Journal, 53, 749–753.

    Article  CAS  Google Scholar 

  • Lemly, A. D., Finger, S. E., & Nelson, M. K. (1993). Sources and impacts of contaminants in arid wetlands. Environmental Toxicology and Chemistry, 12, 2265.

    Article  CAS  Google Scholar 

  • May, T. W., Fairchild, J. F., Petty, J. D., Walther, M. J., Lucero, J., Delvaux, M., et al. (2008). An evaluation of selenium concentrations in water, sediment, invertebrates, and fish from the Solomon River Basin. Environmental Monitoring and Assessment, 137, 213–232.

    Article  CAS  Google Scholar 

  • May, T. W., Walther, M. J., Petty, J. D., Fairchild, J. F., Lucero, J., Delvaux, M., et al. (2001). An evaluation of selenium concentrations in water, sediment, invertebrates, and fish from the Republican River Basin: 1997–1999. Environmental Monitoring and Assessment, 72, 179–206.

    Article  CAS  Google Scholar 

  • Mirbagheri, S. A., Tanji, K. K., & Rajaee, T. (2008). Selenium transport and transformation modelling in soil columns and ground water contamination prediction. Hydrological Processes, 22, 2475–2483.

    Article  CAS  Google Scholar 

  • Mushak, P. (1985). Potential impact of acid precipitation on arsenic and selenium. Environmental Health Perspectives, 63, 105–113.

    Article  CAS  Google Scholar 

  • NAS-NRC (1976). Selenium, assembly of life sciences. Washington D.C.: National Academy of Science, National Research Council.

    Google Scholar 

  • NRC (1989). Irrigation-induced water quality problems. What can be learned from the San Joaquin Valley experience. In National Research Council (NRC) Committee on Irrigation-Induced Water Quality Problems (p. 157). Washington. D.C.: National Academy Press.

    Google Scholar 

  • Neal, R. H., & Sposito, G. (1989). Selenite adsorption on alluvial soils. Soil Science Society of America Journal, 53, 70–74.

    Article  CAS  Google Scholar 

  • Neal, R. H., Sposito, G., Holtzclaw, K. M., & Traina, S. J. (1987). Selenite sorption on alluvial soils, II. Solution composition effects. Soil Science Society of America Journal, 51, 1165–1169.

    Article  CAS  Google Scholar 

  • Neuman, S. P. (1973). Saturated-unsaturated seepage by finite elements. Journal of the Hydraulics Division, ASCE, 99(12), 2233–2250.

    Google Scholar 

  • Nour el-Din, M. M., King, I. P., & Tanji, K. K. (1987). Salinity management model: I. Development. Journal of Irrigation and Drainage Engineering, ASCE, 113(4), 440–453.

    Article  Google Scholar 

  • Peters, G. M., Maher, W., Barford, J. P., & Gomes, V. (1997). Selenium associations in estuarine sediments: Redox effects. Water, Air and Soil Pollution, 99, 275–282.

    CAS  Google Scholar 

  • Sager, M. (1994a). Selenium, occurrence and ecology. In M. Vernet (Ed.), Environmental contamination. Amsterdam: Elsevier.

    Google Scholar 

  • Sager, M. (1994b). Spurenanalytik des Selens, Analytiker Taschenbuch Band 12 (pp. 257–312). Berlin: Springer.

    Google Scholar 

  • Shifang, F. (1991). Selenite adsorption/desorption in the California soils. Ph.D. Dissertation, Soil Science, Univ. of Calif. at Davis, p. 191.

  • SJVDP (1990). A management plan for agricultural surface drainage and related problems on the Westside San Joaquin Valley. Final report (p. 183). Sacramento, CA: San Joaquin Valley Drainage Program, USDI and CA Resources Agency.

  • Sposito, G., de Wit, C. M., & Neal, R. H. (1988). Selenite adsorption on alluvial soils, III: Chemical modeling. Soil Science Society of America Journal, 52, 947–950.

    Article  CAS  Google Scholar 

  • Statman, T. (1974). Selenium uptake by plant. Science, 183, 915–922.

    Article  Google Scholar 

  • Tanji, K. K., Lauchli, A., & Meyer, J. (1986). Selenium in the San Joaquin valley. Environment, 28, 6–39.

    Google Scholar 

  • Tanji, K. K., Ong, C. G. H., Dahlgren, R. A., & Herbel, M. J. (1992). Salt deposits in evaporation ponds: An environmental hazard? California Agriculture, 46, 18–21.

    Google Scholar 

  • Thompson-Eagle, E. T., & Frankenberger, W. T. (1990). Volatilization of selenium from agricultural evaporation pond water. Journal of Environmental Quality, 19, 125–131.

    Article  CAS  Google Scholar 

  • Westernman, D. T., & Robbins, C. W. (1974). Effects of \({\rm{SO}}_{4}^{2-}\) fertilization on Se concentration of alfalfa. Agronomy Journal, 66, 207–218.

    Article  Google Scholar 

  • Zhang, Y., Pan, G., Chen, J., & Hu, O. (2003). Uptake and transport of selenite and selenate by soybean seedlings of two genotypes. Plant and Soil, 253, 437–443.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alper Baba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tayfur, G., Tanji, K.K. & Baba, A. Two-dimensional finite elements model for selenium transport in saturated and unsaturated zones. Environ Monit Assess 169, 509–518 (2010). https://doi.org/10.1007/s10661-009-1193-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-1193-1

Keywords

Navigation