Skip to main content

Advertisement

Log in

Environmental repercussions of cane-sugar industries on the Chhoti Gandak river basin, Ganga Plain, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Chhoti Gandak river basin, situated in the Ganga Plain, is one of India’s most productive cane-sugar industrial belts. Soil and groundwater samples were collected to investigate the impacts of these industries on the environment of the Chhoti Gandak river basin with special reference to soil and water. The results show that concentration of most metals are affected by industrial activities and surrounding agricultural practices. It is evidenced by increased heavy metal concentration in the soils as well as in the aquifers. Metals such as Pb, Cu, and Zn in the soil around the industrial sets are found significantly higher than their normal values in the soil. Metals like Fe and Mn in the groundwater are more than the permissible limit prescribed by the World Health Organization. In this study, an attempt was made to distinguish between the naturally occurring and anthropogenically induced metals in the soil. Analysis of geochemical properties, disposal of industrial wastes, inadequate application of agrochemicals, and their impact on environment indicate the sustainable implementation of integrated wastewater management plan in these industrial sets and also in similar situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adriano, D. C. (1992). Biogeochemistry of trace metals. In S. J. Buckland, H. K. Ellis & R. T. Salter (Eds.), Ambient concentrations of selected organochlorines in soils. Organochlorines programme. Wellington, New Zealand: Ministry for the Environment 1998 (96 pp.). Boca Raton, Florida: Lewis.

    Google Scholar 

  • Alloway, B. J. (1995). Heavy metals in soils. London: Blackie.

    Google Scholar 

  • Anderson, P. R., & Christensen, T. H. (1998). Distribution of coefficient of Cd, Co, Ni and Zn in soils. Journal of Soil Science, 39, 15–22.

    Article  Google Scholar 

  • APHA, AWWA, WPCF (1992). Standard methods for the examination of water and waste water (16th ed.). Washington DC: APHA.

    Google Scholar 

  • Appelo, C. A. J., & Postma, D. (1993). Geochemistry, groundwater and pollution. Rotterdam: AA Balkema.

    Google Scholar 

  • Applin, K. R., & Zhao, N. (1989). The kinetics of Fe(II) oxidation and well screen encrustation. Ground Water, 27, 168–174.

    Article  CAS  Google Scholar 

  • Baize, D., & Sterckeman, T. (2001). Of the necessity of knowledge of the natural pedo-geochemical background content in the evaluation of the contamination of soil by trace elements. The Science of Total Environment, 264, 127–139.

    Article  CAS  Google Scholar 

  • Berner, E. K., & Berner, R. A. (1987). The global water cycle: Geochemistry and environment. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Bhatt, K. B., & Saklani, S. (1996). Hydrogeochemistry of the upper Ganges river, India. Journal of Geological Society of India, 48, 171–182.

    CAS  Google Scholar 

  • BIS (1991). Bureau of Indian Standards—Indian standard specification for drinking water, IS:10500.

  • Bittel, J. E., & Miller, R. J. (1974). Lead, cadmium and calcium selectivity coefficients on montmorillonite, illite and kaolinite. Journal of Environmental Quality, 3, 243–254.

    Article  Google Scholar 

  • Bowen, H. J. M. (1979). The environmental chemistry of the elements. London: Academic.

    Google Scholar 

  • Canter, L. W. (1997). Nitrate in groundwater. New York: Lewis.

    Google Scholar 

  • Cascales-Pujalte, J. A. (1993). Estudio de la Materia Particulada Sedimentable en Cartagena (274 pp.). Ph.D. thesis. Department of Chemical Engineering Cartagena, University of Murcia.

  • Chang, A. C., Page, A. L., & Warneke, J. E. (1987). Long-term sludge application on cadmium and zinc accumulation in Swiss chard and radish. Journal of Environmental Quality, 16, 217–221.

    Article  CAS  Google Scholar 

  • Christenson, S., & Rae, A. (1993). Ground-water quality in the Oklahoma City urban area. In W. M. Alley (Ed.), Regional groundwater quality (pp. 589–611). New York: Van Nostrand Reinhold.

    Google Scholar 

  • Christie, P., & Beattie, J. A. M. (1989). Grassland soil microbial biomass and accumulation of potentially toxic metals from long term slurry application. Journal of Applied Ecology, 26, 597–612.

    Article  CAS  Google Scholar 

  • Cobb, G. P., Sands, K., Waters, M., Wixson, B. G., & Doward-King, E. (2000). Accumulation of heavy metals by vegetables grown in mine wastes. Environmental Toxicology and Chemistry, 19, 600–607.

    Article  CAS  Google Scholar 

  • Denny, P. (1987). Monitoring of heavy metals—a proposed strategy for developing countries. In T. C. Huchinson, & K. M. Meema (Eds.), Lead, mercury, cadmium and arsenic in the environment. New York: Wiley.

    Google Scholar 

  • Drever, J. I. (1997). The geochemistry of natural waters (3rd ed.). New Jersey: Prentice Hall.

    Google Scholar 

  • Giller, K. E., Witter, E., & McGrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biology & Biochemistry, 30, 1389–1414.

    Article  CAS  Google Scholar 

  • Govil, P. K., Rao, T. G., & Krishna, A. K. (1998). Arsenic contamination in Patancheru industrial area, Medak District. Andhra Pradesh. Journal of Environmental Geochemistry, 1, 5–9.

    Google Scholar 

  • Govil, P. K., Reddy, G. L. N., & Krishna, A. K. (2001). Contamination of soil due to heavy metals in Patancheru industrial development area, Andhra Pradesh, India. Environmental Geology, 41, 461–469.

    Article  CAS  Google Scholar 

  • Hakanson, L. (1980). An ecologica1 risk index for aquatic pollution control: A sedimentological approach. Water Research, 14, 975–1001.

    Article  Google Scholar 

  • Handa, B. K. (1975). Geochemistry and genesis of fluoride containing groundwater in India. Ground Water, 13, 275–281.

    Article  CAS  Google Scholar 

  • Harris, M. L., Wilson, L. K., Elliott, J. E., Bishop, C. A., Tomlin, A. D., & Henning, K. V. (2000). Transfer of DDT and metabolites from fruit orchard soils to American robins (Turdus migratorius) twenty years after agricultural use of DDT in Canada. Archives of Environmental Contamination and Toxicology, 39, 205–220.

    Article  CAS  Google Scholar 

  • Hem, J. D. (1959). Study and interpretation of the chemical characteristics of natural water (pp. 1473). U.S. Geological Survey Water-Supply.

  • Huisman, D. J., Vermeulen, F. J. H., Baker, J., Veldkamp, A., Kroonenberg, S. B., & Klaver, G. T. (1997). A geological interpretation of heavy metal concentrations in soils and sediments in the Southern Netherlands. Journal Geochemical Exploration, 59, 163–174.

    Article  CAS  Google Scholar 

  • Jeong, C. H. (2001). Effect of land use and urbanization of hydrochemistry and contamination of groundwater from Taejon area, Korea. Journal of Hydrology, 253, 194–210.

    Article  CAS  Google Scholar 

  • Kumar, D., & Alappat, B. J. (2005). Analysis of leachate pollution index and formulation of sub-leachate pollution indices. Waste Management Research, 23(3), 230–239.

    Article  CAS  Google Scholar 

  • Kumar, S. C., & Anderson, H. W. (1993). Nitrogen isotopes as indicators of nitrate sources in Minnesota sand plane aquifers. Ground Water, 31, 260–271.

    Article  Google Scholar 

  • Kumar, M., Ramanathan, A. L., Rao, M., & Kumar, B. (2006). Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. Environmental Geology, 50, 1025–1039.

    Article  CAS  Google Scholar 

  • Kumar, S., Singh, I. B., Singh, M., & Singh, D. S. (1995). Depositional pattern in upland surface of Central Ganga Plain near Lucknow. Journal of Geological Society of India, 46, 545–555.

    Google Scholar 

  • Mahlknecht, J. (2003). Estimation of recharge in the independence aquifer, central Mexico, by combining geochemical and groundwater flow models. Ph.D. thesis, Institute of Applied Geology, University of Agriculture and Life Sciences (BOKU), Vienna, Austria.

  • Mahlknecht, J., Steinich, B., & Navarro de, L. L. (2004). Groundwater chemistry and mass transfers in the independence aquifer, central Mexico by using multivariate statistics and mass balance models. Environmental Geology, 45, 781–795.

    Article  CAS  Google Scholar 

  • Matthess, G., & Harvey, J. C. (1982). The properties of groundwater. New York: Wiley.

    Google Scholar 

  • McGrath, S. P. (1994). Effects of heavy metals from sewage sludge on soil microbes in agricultural ecosystems. In S. M. Ross (Ed.), Toxic metals in soil–plant systems (pp. 242–274). Chichester: Wiley.

    Google Scholar 

  • McLaughlin, M. J., Tiller, K. G., Naidu, R., & Stevens, D. P. (1996). Review: The behaviour and environmental impact of contaminants in fertilizers. Australian Journal of Soil Research, 34, 1–54.

    Article  CAS  Google Scholar 

  • Merrington, G., Rogers, S. L., & Van, Z. L. (2002). The potential impact of long-term copper fungicide usage on soil microbial biomass and microbial activity in an avocado orchard. Australian Journal Soil Research, 40, 749–759.

    Article  CAS  Google Scholar 

  • Merry, R. H., Tiller, K. G., & Alston, A. M. (1986). The effects of soil contamination with copper, lead and arsenic on the growth and composition of plants. Plant Soil, 95, 255–269.

    Article  CAS  Google Scholar 

  • Merwin, I., Pruyne, P. T., Ebel, J. G., Manzell, K. L., & Lisk, D. J. (1994). Persistence, phytotoxicity and management of arsenic, lead and mercury residues in old orchard soils of New York State. Chemosphere, 29, 1361–1367.

    Article  CAS  Google Scholar 

  • Mohindra, R. & Parkash, B. (1990). Clay mineralogy of the soils of Gandak megafan and adjoining area, Middle Gangetic Plain, India. Science Geological Bulletin, 43(2–3), 193–203 (Paper presented at the 9th International Clay Conference, Strasbourg).

    Google Scholar 

  • Morgan, M. D., Moran, J. M., & Wiersma, J. H. (1993). Environmental science: Managing biological resources (Vol. II). Dubuque: Wm C Brown.

    Google Scholar 

  • Nagaraju, A., & Karimulla, S. (2002). Accumulation of elements in plants and soils in and around Nellore mica belt, Andhra Pradesh, India—a biogeochemical study. Environmental Geology, 41, 852–860.

    Article  CAS  Google Scholar 

  • Nicholson, F. A., Smith, S. R., Alloway, B. J., Carlton-Smith, C., & Chambers, B. J. (2003). An inventory of heavy metals inputs to agricultural soils in England and Wales. The Science of the Total Environment, 311, 205–219.

    Article  CAS  Google Scholar 

  • Olade, M. A. (1987). Heavy metal pollution and the need for monitoring: Illustrated for developing countries in West Africa. In T. C. Hutchinson & K. M. Meema (Eds.), Lead, mercury, cadmium and arsenic in the environment. New York: Wiley.

    Google Scholar 

  • Pascoe, E. H. (1917). A manual of geology of India and Burma. Delhi: Government of India Publication.

    Google Scholar 

  • Pawar, N. J. & Nikumbh, J. D. (1999). Trace element geochemistry of ground water from Behedi basin, Nasik district, Maharashtra. Journal of Geological Society of India, 54, 501–514.

    CAS  Google Scholar 

  • Pawar, N. J., Pondhe, G. M., & Patil, S. F. (1998). Groundwater pollution due to sugar-mill effluent, at Sonai, Maharashtra, India. Environmental Geology, 34(2/3), 151–158.

    Article  CAS  Google Scholar 

  • Pawar, N. J., & Shaikh, I. J. (1995). Nitrate pollution of groundwaters from basaltic aquifers, Deccan Trap Hydrologic Province, India. Environmental Geology, 25, 197–204.

    Article  CAS  Google Scholar 

  • Pierzynski, G. M., Sims, J. T., & Vance, G. F. (1994). Soils and environmental quality. Boca Raton: Lewis.

    Google Scholar 

  • Pimentel, D. (1993). World soil erosion and conservation. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Pinay, G., Fabre, A., Vervier, P., & Gazelle, F. (1992). Control of C, N, P distribution in soils of riparian forests. Landscape Ecology, 6, 121–132.

    Article  Google Scholar 

  • Prohic, E., Davis, J. C., & Hansberger, G. (1997). Geochemical patterns in soils of the karst region, Croatia. Journal Geochemical Exploration, 60, 139–155.

    Article  CAS  Google Scholar 

  • Sanders, J. R., McGarth, S. P., & Adams, T. (1987). Zinc, Cu and Ni concentration in soil extracts and crops grown on four soils treated with metal loaded sewage sludges. Environmental Pollution, 44, 193–210.

    Article  CAS  Google Scholar 

  • Singh, D. S. & Singh, I. B. (2005). Facies architecture of the Gandak Megafan, Ganga Plain, India. Special Publication of Journal of Palaeontological Society of India, 2, 125–140.

    Google Scholar 

  • Singh, I. B., Srivastava, P., Shukla, U., Sharma, S., Sharma, M., Singh, D. S., et al. (1999). Upland interfluve (Doab) deposition: Alternative model to muddy overbank deposits. Facies, 40, 197–210.

    Article  Google Scholar 

  • Smolders, A. J. P., Hudson-Edwards, K. A., Van der Velde, G., & Roelofs, J. G. M. (2004). Controls on water chemistry of the Pilcomayo river (Bolivia, South-America). Applied Geochemistry, 19, 1745–1758.

    Article  CAS  Google Scholar 

  • Srivastava, P. C. & Gupta, U. C. (1996). Trace element tolerance. In P. C. Srivastava & U. C. Gupta (Eds.), Trace elements in crop production (pp. 66–72). Lebanon: Science Publishers.

    Google Scholar 

  • Stallard, R. F., & Edmond, J. M. (1987). Geochemistry of the Amazon 3. Weathering chemistry and limits to dissolved inputs. Journal of Geophysical Research, 92, 8293–8302.

    Article  CAS  Google Scholar 

  • Subba Rao, N. (2002). Geochemistry of groundwater in parts of Guntur district, Andhra Pradesh, India. Environmental Geology, 41, 552–562.

    Article  CAS  Google Scholar 

  • Subramanian, V. & Saxena, K. (1983). Hydrogeochemistry of groundwater in the Delhi region of India, relation of water quality and quantity. In Proceedings of the Hamburg Symposium IAHS Pub. (No. 146, 307–316).

  • Thornton, I. (1991). Metal contamination in urban areas. In P. Bullock (Ed.), Soils in the urban environment. Cambridge: Cambridge University Press.

    Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. Geological Society of America Bulletin, 72, 175–191.

    Article  CAS  Google Scholar 

  • Van-Gaans, P. F. M., Vriend, S. P., Bleyerveld, S., Schrage, G., & Vos, A. (1995). Assessing environmental soil quality in rural areas. A baseline study in the Province of Zeeland, The Netherlands and reflections on soil monitoring network designs. Environmental Monitoring and Assessment, 34, 73–102.

    Article  CAS  Google Scholar 

  • Vazquez, F. G., Sharma, V. K. & Perez-Cruz, L. (2002). Concentrations of elements and metals in sediments of the southeastern Gulf of Mexico. Environmental Geology, 42, 41–46.

    Article  CAS  Google Scholar 

  • Webber, M. D., & Wang, C. (1995). Industrial organic compounds in selected Canadian soils. Canadian Journal of Soil Science, 75, 513–524.

    CAS  Google Scholar 

  • White, A. F., Benson, S. M., Yee, A. W., Woolenberg, H. A., & Flexser, S. (1991). Ground water contamination at the Kesterson reservoir, California—geochemical parameters influencing selenium mobility. Water Resource Research, 27, 1085–1098

    Article  CAS  Google Scholar 

  • WHO (1993). Guidelines for drinking-water quality, V.1, recommendations. Geneva: World Health Organization.

    Google Scholar 

  • Williams, D. D., Williams, N. E., & Cay, Y. (1999). Road salt concentration of groundwater in a major metropolitan area and development of a biological index to monitor its impacts. Water Research, 34, 127–138.

    Article  Google Scholar 

  • Zelles, L., Bai, Q. Y., Ma, R. X., Rackwitz, R., Winter, K., & Beese, F. (1994). Microbial biomass, metabolic activity and nutritional status determined from fatty acid patterns and poly-hydroxybutyrate in agriculturally-managed soils. Soil Biology and Biochemistry, 26, 439–446.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikram Bhardwaj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhardwaj, V., Singh, D.S. & Singh, A.K. Environmental repercussions of cane-sugar industries on the Chhoti Gandak river basin, Ganga Plain, India. Environ Monit Assess 171, 321–344 (2010). https://doi.org/10.1007/s10661-009-1281-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-1281-2

Keywords

Navigation