Skip to main content

Advertisement

Log in

A GIS-based assessment of the suitability of SCIAMACHY satellite sensor measurements for estimating reliable CO concentrations in a low-latitude climate

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

An assessment of the reliability of the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) satellite sensor measurements to interpolate tropospheric concentrations of carbon monoxide considering the low-latitude climate of the Niger Delta region in Nigeria was conducted. Monthly SCIAMACHY carbon monoxide (CO) column measurements from January 2,003 to December 2005 were interpolated using ordinary kriging technique. The spatio-temporal variations observed in the reliability were based on proximity to the Atlantic Ocean, seasonal variations in the intensities of rainfall and relative humidity, the presence of dust particles from the Sahara desert, industrialization in Southwest Nigeria and biomass burning during the dry season in Northern Nigeria. Spatial reliabilities of 74 and 42 % are observed for the inland and coastal areas, respectively. Temporally, average reliability of 61 and 55 % occur during the dry and wet seasons, respectively. Reliability in the inland and coastal areas was 72 and 38 % during the wet season, and 75 and 46 % during the dry season, respectively. Based on the results, the WFM-DOAS SCIAMACHY CO data product used for this study is therefore relevant in the assessment of CO concentrations in developing countries within the low latitudes that could not afford monitoring infrastructure due to the required high costs. Although the SCIAMACHY sensor is no longer available, it provided cost-effective, reliable and accessible data that could support air quality assessment in developing countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adaramola, M. S., & Oyewola, O. M. (2011). On wind speed pattern and energy potential in Nigeria. Energy Policy, 39(5), 2501–2506.

  • . Akinro, A. O., Opeyemi, D. A., & Ologunagba, I. B. (2008). Climate change and environmental degradation in the Niger Delta region of Nigeria: its vulnerability, impacts and possible mitigations. Research Journal of Applied Sciences, 3(3), 167–173.

    Google Scholar 

  • Attorre, F., Alfo', M., De Sanctis, M., Francesconi, F., & Bruno, F. (2007). Comparison of interpolation methods for mapping climatic and bioclimatic variables at regional scale. International Journal of Climatology, 27(13), 1825–1843.

    Article  Google Scholar 

  • Azpurua, M., & Dos Ramos, K. (2010). A comparison of spatial interpolation methods for the estimation of average electromagnetic field magnitude. Progress in Electromagnetic Research M, 14, 135–145.

    Article  Google Scholar 

  • Barker, T., Bashmakov, I., Bernstein, L., Bogner, J. E., Bosch, P. R., Dave, R., et al. (2007). Technical summary. In B. Metz, O. R. Davidson, P. R. Bosch, R. Dave, & L. A. Meyer (Eds.), Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report on Intergovernmental Panel on Climate Change (pp. 25–93). Cambridge: Cambridge University Press.

    Google Scholar 

  • Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noel, S., Rozanov, V. V., Chance, K. V., & Goede, A. P. H. (1999). SCIAMACHY: mission objectives and measurement modes. Journal of the Atmospheric Sciences, 56(2), 127–150.

    Article  Google Scholar 

  • Buchwitz, M. (2009). SCIAMACHY WFM-DOAS (WFMD) Methane, carbon monoxide, and carbon dioxide columns: Algorithm description and product specification [online]. Report number: IUP-SCIA-WFMD-ADPS-0004 Version 4. Bremen: Institute of Environmental Physics (IUP) University of Bremen.

    Google Scholar 

  • Buchwitz, M., de Beek, R., Noel, S., Burrows, J. P., Bovensmann, H., Schneising, O., et al. (2006). Atmospheric carbon gases retrieved from SCIAMACHY by WFM-DOAS: version 0.5 CO and CH4 and impact of calibration improvements on CO2 retrieval. Atmospheric Chemistry and Physics, 6(9), 2727–2751.

    Article  CAS  Google Scholar 

  • Buchwitz, M., Khlystova, I., Bovensmann, H., & Burrows, J. P. (2007). Three years of global carbon monoxide from SCIAMACHY: comparison with MOPITT and first results related to the detection of enhanced CO over cities. Atmospheric Chemistry and Physics, 7(9), 2399–2411.

    Article  CAS  Google Scholar 

  • Caruso, C., & Quarta, F. (1998). Interpolation methods comparison. Computers & Mathematics with Applications, 35(12), 109–126.

    Article  Google Scholar 

  • Cattani, E., Costa, M. J., Torricella, F., Levizzani, V., & Silva, A. M. (2006). Influence of aerosol particles from biomass burning on cloud microphysical properties and radiative forcing. Atmospheric Research, 82(1–2), 310–327.

    Article  CAS  Google Scholar 

  • Chokor, B. A. (2004). Perception and response to the challenge of poverty and environmental resource degradation in rural Nigeria: case study from the Niger Delta. Journal of Environmental Psychology, 24(3), 305–318.

    Article  Google Scholar 

  • Dils, B., De Mazière, M., Müller, J. F., Blumenstock, T., Buchwitz, M., de Beek, R., et al. (2006). Comparisons between SCIAMACHY and ground-based FTIR data for total columns of CO, CH4, CO2 and N2O. Atmospheric Chemistry and Physics, 6(7), 1953–1976.

    Article  CAS  Google Scholar 

  • Di Nicolantonio, W., Cacciari, A., Petritoli, A., Carnevale, C., Pisoni, E., Volta, M. L., Stocchi, P., Curci, G., Bolzacchini, E., Ferrero, L., Ananasso, C., & Tomasi, C. (2009). MODIS and OMI satellite observations supporting air quality monitoring. Radiation Protection Dosimetry, 137(3–4), 280–287.

  • Environmental Resource Managers Limited, ERML (1997). Niger delta environmental survey final report Phase I: Volume 1—environmental and socio-economic characteristics. Nigeria.

  • European Commission, Joint Research Centre (JRC) / Netherlands Environmental Assessment Agency (PBL) (2010). Emission database for global atmospheric research (EDGAR). European Communities.

  • European Environment Agency (EEA). (1999). Chapter 3.12: Urban Areas—Environment in EU at the Turn of the Century. Copenhagen: European Environment Agency, EEA.

    Google Scholar 

  • Forster, P., Ramaswamy, V., Artaxo, P., Bernsten, P., Betts, R., Fahey, D. W., et al. (2007). Changes in atmospheric constituents and in radiative forcing. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Climate Change 2007: The physical science basis. Contribution of the Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 129–234). Cambridge: Cambridge University Press.

    Google Scholar 

  • Frankenberg, C., Platt, U., & Wagner, T. (2005). Retrieval of CO from SCIAMACHY onboard ENVISAT: detection of strongly polluted areas and seasonal patterns in global CO abundances. Atmospheric Chemistry and Physics, 5(6), 1639–1644.

    Article  CAS  Google Scholar 

  • Ghude, S. D., Van der, A. R. J., Beig, G., Fadnavis, S., & Polade, S. D. (2009). Satellite derived trends in NO2 over the major global hotspot regions during the past decade and their inter-comparison. Environmental Pollution, 157(6), 1873–1878.

    Article  CAS  Google Scholar 

  • Gloudemans, A. M. S., Schrijver, H., Kleipool, Q., van den Broek, M. M. P., Straume, A. G., Lichtenberg, G., van Hees, R. M., Aben, I., & Meirink, J. F. (2005). The impact of SCIAMACHY near-infrared instrument calibration on CH4 and CO total columns. Atmospheric Chemistry and Physics Discussion, 5, 1733–1770.

    Article  Google Scholar 

  • Gottwald, M., Bovensmann, H., Lichtenberg, G., Noel, S., von Bargen, A., Slijkhuis, S., et al. (2006). SCIAMACHY, monitoring the changing earth's atmosphere. Bonn: DLR, Institut für Methodik der Fernerkundung (IMF).

    Google Scholar 

  • Gupta, P., Christopher, S. A., Wang, J., Gehrig, R., Lee, Y., & Kumar, N. (2006). Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmospheric Environment, 40(30), 5880–5892.

    Article  CAS  Google Scholar 

  • Haywood, J. M., Osborne, S. R., & Abel, S.J. (2004). The effect of overlying absorbing aerosol layers on remote sensing retrievals of cloud effective radius and cloud optical depth. Quarterly Journal of the Royal Meteorological Society, 130(598), 779–800.

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978. doi:10.1002/joc.1276.

    Article  Google Scholar 

  • Hooninger, G., von Friedeburg, C., & Platt, U. (2004). Multi-axis differential optical absorption spectroscopy (MAX-DOAS). Atmospheric Chemistry and Physics, 4, 231–254.

    Article  Google Scholar 

  • Huston, M. A., & Marland, G. (2003). Carbon management and biodiversity. Journal of Environmental Management, 67, 77–86.

    Article  Google Scholar 

  • Hutchison, K. D. (2003). Application of MODIS satellite data and products for monitoring air quality in the state of Texas. Atmospheric Environment, 37(17), 2403–2412.

  • Johnston, K., Ver Hoef, J. M., Krivoruchko, K., & Lucas, N. (2001). Using ArcGIS geostatistical analyst. Redlands: ESRI.

    Google Scholar 

  • Joyce, L. A., Price, D. T., McKenney, D. W., Siltanen, R. M., Papadopol, P., Lawrence, K., & Coulson, D. P. (2011). High resolution interpolation of climate scenarios for the conterminous USA and Alaska derived from general circulation model simulations. Gen Tech Report RMRS-GTR-263 (p. 87). Fort Collins: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.

    Google Scholar 

  • Kampas, M., & Castanas, E. (2008). Human health effects of air pollution. Environmental Pollution, 151, 362–367.

    Article  Google Scholar 

  • Kanaroglou, P. S., Soulakellis, N. A., & Sifakis, N. I. (2002). Improvement of satellite derived pollution maps with the use of a geostatistical interpolation method. Journal of Geographical Systems, 4(2), 193–208.

    Article  Google Scholar 

  • Kaskaoutis, D. G., Kharol, S. K., Sifakis, N., Nastos, P. T., Sharma, A. R., Badarinath, K. V. S., & Kambezidis, H. D. (2011). Satellite monitoring of the biomass-burning aerosols during the wildfires of August 2007 in Greece: climate implications. Atmospheric Environment, 45(3), 716–726.

    Article  CAS  Google Scholar 

  • Kassteele, J. (2006). Statistical air quality mapping. Doctorate, Wageningen University, The Netherlands. Available from: http://edepot.wur.nl/121778.

  • Keil, A., & Haywood, J. M. (2003). Solar radiative forcing by biomass burning aerosol particles during SAFARI 2000: a case study based on measured aerosol and cloud properties. Journal of Geophysical Research, 108(D13), 8467.

    Article  Google Scholar 

  • Kruvoruchko, K., & Gribov, A. (2004). Geostatistical interpolation and simulation with non-Eucidean distances. In: Sanchez-Vila, X., Carrera, J., and Gomez-Hernandez, J.J. (Eds) geoENV IV. Kluwer Academic Publishers, 2004. Available at http://www.esri.com/software/arcgis/arcgisxtensions/geostatistical/research_papers.html.

  • Kumar, A., Maroju, S., & Bhat, A. (2007). Application of ArcGIS geostatistical analyst for interpolating environmental data from observations. Environmental Progress, 26(3), 220–225.

    Article  CAS  Google Scholar 

  • Lamsal, L. N., Martin, R. V., van Donkelaar, A., Steinbacher, M., Celarier, E. A., Buscela, E., Dunlea, E. J., & Pinto, J. P. (2008). Ground level nitrogen dioxide concentrations inferred from the satellite-borne Ozone Monitoring Instrument. Journal of Geophysical Research, 113(D16), D16308.

    Article  Google Scholar 

  • Langmann, B., Duncan, B., Textor, C., Trentmann, J., & van der Werf, G. R. (2009). Vegetation fire emissions and their impact on air pollution and climate. Atmospheric Environment, 43(1), 107–116.

    Article  CAS  Google Scholar 

  • Leroux, M. (2001). The meteorology and climate of tropical Africa. Chichester: Praxis Publishing Limited.

    Google Scholar 

  • Levelt, P. F., van den Oord, G. H. J., Dobber, M. R., Malkki, A., Huib, V., de Vries, J., Stammes, P., Lundell, J. O. V., & Saari, H. (2006). The ozone monitoring instrument. Geosciences and Remote Sensing, IEEE Transactions, 44(5), 1093–1101.

    Article  Google Scholar 

  • Li, C., Hsu, C. N., & Tsay, S.-C. (2011). A study on the potential applications of satellite data in air quality monitoring and forecasting. Atmospheric Environment, 45(22), 3663–3675.

    Article  CAS  Google Scholar 

  • Lim, H.S., MatJafri, M.Z., & Abdullah, K. (2004). Retrieval of air quality using a newly simulated algorithm from aerosol optical depth. In: Anonymous: Map Asia 2004. Beijing, China, 26 – 29 August, 2004. Website: http://www.geospatialworld.net/index.php?option=com_content&view=article&id=15486&catid=130%3Aenvironment-air-pollution&Itemid=41.

  • Lyon, S. W., Seibert, J., Lembo, A. J., Steenhuis, T. S., & Walter, M. T. (2008). Incorporating landscape characteristics in a distance metric for interpolating between observations of stream water chemistry. Hydrological and Earth System Sciences, 12, 1229–1239.

    Article  Google Scholar 

  • Martin, R. V. (2008). Satellite remote sensing of surface air quality. Atmospheric Environment, 42(34), 7823–7843.

    Article  CAS  Google Scholar 

  • Olaniran, O. J. (1986). On the classification of tropical climates for the study of regional climatology: Nigeria as a case study. Geografisca Annaler. Series A, Physical Geography, 68(4), 233–244.

    Google Scholar 

  • Osterman, G., Bowman, K., Eldering, A., Fisher, B., Herman, R., Jacob, D., et al. (2007). Earth Observing System (EOS) Tropospheric Emission Spectrometer (TES): Level 2 (L2) Data user’s Guide, Version F04_04 Data. Report number: D-8042. Pasadena: Jet Propulsion Laboratory, California Institute of Technology.

    Google Scholar 

  • Platt, U., & Stutz, J. (2008). Differential optical absorption spectroscopy: Principles and applications. Berlin: Springer Verlag. 597 pp.

    Google Scholar 

  • Richter, A. (2006). Differential optical absorption spectroscopy as a tool to measure pollution from space. Spectroscopy Europe, 18(6), 14–21.

    CAS  Google Scholar 

  • Shim, C., Li, Q., Luo, M., Kulawik, S., Worden, H., Worden, J., et al. (2009). Satellite observations of Mexico City pollution outflow from the Tropospheric Emissions Spectrometer (TES). Atmospheric Environment, 43(8), 1540–1547.

    Article  CAS  Google Scholar 

  • Sifakis, N. (1999). Identification of priority areas and prospect analysis for the use of Earth Observation Data for EEA State of the Environment Reporting. Report number: Contract #3010/SER/9700212. Copenhagen: European Environment Agency, EEA.

    Google Scholar 

  • Stutz, J., & Platt, U. (1996). Numerical analysis and estimation of the statistical error of differential optical absorption spectroscopy measurements with least-squares methods. Applied Optics, 35(30), 6041–6053.

    Article  CAS  Google Scholar 

  • United Nations Development Programme, UNDP. (2006). Niger delta human development report. Abuja: United Nations Development Programme.

    Google Scholar 

  • United Nations Environment Programme, UNEP. (2005). Urban air quality management toolbox. Nairobi: United Nations Environment Programme.

    Google Scholar 

  • United States Environmental Protection Agency, USEPA (2006). Air and radiation. National Ambient Air Quality Standards (NAAQS). Website: http://www.epa.gov/air/criteria.html.

  • Uyigue, E., & Agho, M. (2007). Coping with climate change and environmental degradation in the Niger Delta of Southern Nigeria. Benin City: Community Research and Development Centre (CREDC).

    Google Scholar 

  • World Meteorological Organization, WMO. (1995). Manual on codes. Report number: WMO No. 306. Geneva: World Meteorological Organization.

    Google Scholar 

  • Ziemke, J. R., Chandra, S., Duncan, B. N., Froidevaux, L., Bhartia, P. K., Levelt, P. F., & Waters, J. W. (2006). Tropospheric ozone determined from Aura OMI and MLS: evaluation of measurements and comparison with the Global Modeling Initiative's Chemical Transport Model. Journal of Geophysical Research, 111(D19), D19303.

    Article  Google Scholar 

  • Zimmerman, D., Pavlik, C., Ruggles, A., & Armstrong, M. (1999). An experimental comparison of ordinary and universal kriging and inverse distance weighting. Mathematical Geology, 31(4), 375–390.

    Article  Google Scholar 

Download references

Acknowledgments

The Nigerian National Space Research and Development Agency (NASRDA), Abuja, Nigeria funded this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mofoluso A. Fagbeja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fagbeja, M.A., Hill, J.L., Chatterton, T.J. et al. A GIS-based assessment of the suitability of SCIAMACHY satellite sensor measurements for estimating reliable CO concentrations in a low-latitude climate. Environ Monit Assess 187, 25 (2015). https://doi.org/10.1007/s10661-014-4227-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-014-4227-2

Keywords

Navigation