Skip to main content

Advertisement

Log in

Densities and antimicrobial resistance of Escherichia coli isolated from marine waters and beach sands.

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Bacterial resistance is a rising problem all over the world. Many studies have showed that beach sands can contain higher concentration of microorganisms and represent a risk to public health. This paper aims to evaluate the densities and resistance to antimicrobials of Escherichia coli strains, isolated from seawater and samples. The hypothesis is that microorganisms show higher densities in contaminated beach sands and more antimicrobial resistance than the water column. Density, distribution, and antimicrobial resistance of bacteria E. coli were evaluate in seawater and sands from two recreational beaches with different levels of pollution. At the beach with higher degree of pollution (Gonzaguinha), water samples presented the highest densities of E. coli; however, higher frequency of resistant strains was observe in wet sand (71.9 %). Resistance to a larger number of antimicrobial groups was observe in water (betalactamics, aminoglycosides, macrolides, rifampicins, and tetracyclines) and sand (betagalactamics and aminoglycosids). In water samples, highest frequencies of resistance were obtain against ampicilin (22.5 %), streptomycin (15.0 %), and rifampicin (15.0 %), while in sand, the highest frequencies were observe in relation to ampicilin (36.25 %) and streptomycin (23.52 %). At the less polluted beach, Ilha Porchat, highest densities of E. coli and higher frequency of resistance were obtain in wet and dry sand (53.7 and 53.8 %, respectively) compared to water (50 %). Antimicrobial resistance in strains isolated from water and sand only occurred against betalactamics (ampicilin and amoxicilin plus clavulanic acid). The frequency and variability of bacterial resistance to antimicrobials in marine recreational waters and sands were related to the degree of fecal contamination in this environment. These results show that water and sands from beaches with a high index of fecal contamination of human origin may be potential sources of contamination by pathogens and contribute to the dissemination of bacterial resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alm, E., Burke, J., & Spain, A. (2003). Fecal indicator bacteria are abundant in wet sand at freshwater beaches. Water Research, 37, 3978–3982.

    Article  Google Scholar 

  • APHA, American Public Health Association. (2012). Standard Methods for the Examination of Water and Wastewater. APH, AWWA, WEF. 22th Edition. 1120p.

  • Arvanitidou, M., Katsouyannopoulos, V., & Tsakris, A. (2001). Antibiotic resistance patterns of enterococci isolated from coastal bathing waters. Journal of Medical Microbiology, 50, 1001–1005.

    CAS  Google Scholar 

  • Ashbolt, N. J., Kueh, C. S. W., & Grohmann, G. S. (1993). Significance of specific bacterial pathogens in the assessment of polluted receiving water of Sydney, Australia. Water Science and Technology, 27(3-4), 449–452.

    Google Scholar 

  • Bartram, J., & Rees, G. (2000). Monitoring Bathing Waters. London: E & FN Spon. Brasil. Conselho Nacional do Meio Ambiente - CONAMA. Dispõe sobre a sistemática de avaliação da qualidade ambiental das águas. Resolução CONAMA n 274, de 29 de novembro de 2000. Diário Oficial da União, República Federativa do Brasil, Brasília, DF., 8 jan. 2001.

  • Brunke, M., & Fischer, H. (1999). Hyporheic bacteria—Relationships to environmental gradients and invertebrates in a prealpine stream. Archives Hydrobiology, 146, 189–217.

    Google Scholar 

  • CETESB - Companhia de Tecnologia e Saneamento Ambiental. (2006). Relatório de qualidade das águas litorâneas do Estado de São Paulo: balneabilidade das praias 2005. São Paulo: Companhia de Tecnologia de Saneamento Ambiental.

    Google Scholar 

  • CETESB, Companhia de Tecnologia e Saneamento Ambiental. (2008). Relatório de qualidade das águas litorâneas do Estado de São Paulo: Balneabilidade das praias 2007. São Paulo: Companhia de Tecnologia de Saneamento Ambiental.

    Google Scholar 

  • CETESB, Companhia de Tecnologia e Saneamento Ambiental. (2012). Variáveis de qualidade das águas. São Paulo: Companhia de Tecnologia e Saneamento Ambiental.

  • CONAMA, Conselho Nacional do Meio Ambiente. (2000). Resolução n.274, Recomenda a adoção de sistemáticas de avaliação de qualidade das águas. Brazil: Conselho Nacional do Meio Ambiente.

  • Constanzo, S. D., Murby, J., & Bates, J. (2005). Ecosystem response to antibiotics entering in the aquatic environment. Marine Pollution Bulletin, 51, 218–223.

    Article  Google Scholar 

  • Dada, A. C., Ahmad, A., Usup, G., & Heng, Y. (2013). Speciation and antimicrobial resistance of Enterococci isolated from recreational beaches in Malaysia. Environmental Monitoring and Assessment, 185, 1583–1599.

    Article  CAS  Google Scholar 

  • Daughton, C. G., & Ternes, T. A. (1999). Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environmental Health Perspectives, 107, 907–938.

    Article  CAS  Google Scholar 

  • Davies, C. M., & Bavor, H. J. (2000). The fate of storm water associated bacteria in constructed wetland and water pollution control pond systems. Journal of Applied Microbiology, 89(2), 349–460.

    Article  CAS  Google Scholar 

  • Davies, C. M., Long, J. A. H., Donald, M., & Ashbolt, N. J. (1995). Survival of fecal microorganism in marine and freshwater sediments. Applied Environmental Microbiology, 61(5), 1888–1896.

    CAS  Google Scholar 

  • Davies-Colley, R. J., Donnison, A. M., Speed, D. J., Ross, C. M., & Nagels, J. W. (1999). Inactivation of fecal indicator microorganisms in wate stabilization ponds: Interactions of environmental factors with sunlight. Water Research, 33(5), 1220–1230.

    Article  CAS  Google Scholar 

  • Elmanama, A. A., Fahd, M. I., Abdallah, A. S., & Bahr, S. (2005). Microbiological beach sand quality in Gaza Strip in comparison to seawater quality. Environmental Research, 99, 1–10.

    Article  CAS  Google Scholar 

  • Frieden, T. R., Munsiff, S. S., Low, D. E., Willey, B. M., Williams, G., Faur, Y., et al. (1993). Emergence of vancomycin-resistant enterococci in New York city. Lancet, 324, 76–79.

    Article  Google Scholar 

  • Galvin, S., Boyle, F., Hickey, P., Vellinga, A., Morris, D., & Cormican, M. (2010). Enumeration and characterization of antimicrobial-resistant Escherichia coli bacteria in effluent from municipal, hospital, and secondary treatment facility sources. Applied and Environmental Microbiology, 76, 4772–4779.

    Article  CAS  Google Scholar 

  • Ghinsberg, R., Dov, L. B., Rogol, M., Sheinberg, Y., Nitzan, Y. (1994). Monitoring of selected bacteria and fungi in sand and sea water along the Tel Aviv coast. Microbios, 77, 29–40.

  • Halliday, E., & Gast, R. J. (2011). Bacteria in Beach Sands: an emerging challenge in protecting Coastal Water Quality and Bather Health. Environmental Science and Tecnology, 45, 370–379.

    Article  CAS  Google Scholar 

  • Halling-Sorensen, B. J., Nielsen, S. N., Lanzky, P. F., & Ingerslev, F. (1998). Occurrence, fate and effects of pharmaceutical substances in the environment—a review. Chemosphere, 36, 357–393.

    Article  CAS  Google Scholar 

  • Hawser, S., Hoban, D., Bouchillon, S., Badal, R., Carmeli, Y., & Hawkey, P. (2010). Antimicrobial susceptibility of intra-abdominal Gram-negative bacilli from Europe: SMART Europe 2008. European Journal of Clinical Microbiology Infections Diseases, 30, 173–179.

    Article  Google Scholar 

  • Hirsch, R., Ternes, T., Haberer, K., & Kratz, K. (1999). Occurrence of antibiotics in the aquatic environment. The Science of the Total Environment, 225, 109–118.

    Article  CAS  Google Scholar 

  • Howell, E. T., Marvin, C. H., Bilyea, R. W., Kaus, P. B., & Somers, K. (1996). Changes in environmental conditions during Dreissena colonization of a monitoring station in eastern Lake Erie. J. Gt. Lakes Research, 22, 744–756.

    Article  CAS  Google Scholar 

  • Huycke, M. M., Sahm, D. F., & Gilmore, M. S. (1998). Multiple-drug resistant enterococci: the nature of the problem and an agenda for the future. Emerging Infectios Diseases, 4(2), 239–249.

    Article  CAS  Google Scholar 

  • Kamper, N. (2008). Veterinary antibiotics in the acquatic and terrestrial environment. Ecological Indicators, 8, 1–13.

    Article  Google Scholar 

  • Kim, S. C. & Carlson, K. (2007). Temporal and Spatial Trends in the Occurrence of Human and Veterinary Antibiotics in Aqueous and River Sediment Matrices. Environmental Science & Technology, 41, 50–57.

  • Koczura, R., Mokracka, J., Jablonska, L., Gozdecka, E., Kubek, M., & Kaznowski, A. (2012). Antimicrobial resistance of integron-harboring Escherichia coli isolates from clinical samples, wastewater treatment plant and river water. Science of the Total Environment, 414, 680–685.

    Article  CAS  Google Scholar 

  • Kühn, I., Iversen, A., Burman, L. G., Olsson-Liljequist, B., Franklin, A., Finn, M., et al. (2000). Epidemiology and ecology of enterococci, with special reference to antibiotic resistant strains, in animals, humans and the environment. Example of and ongoing project within the European research program. International Journal of Antimicrobial Agents, 14(4), 337–342.

    Article  Google Scholar 

  • Kumarasamy, K. K., Toleman, M. A., Walsh, T. R., et al. (2010). Emergence of a new antibiotic resistance mechanism in India, Pakistan. And the UK: a molecular, biological, and epidemiological study. Lancet Infection Diseases, 10, 597–602.

    Article  CAS  Google Scholar 

  • Mendes, B., Nascimento, M. J., & Oliveira, J. S. (1993). Preliminary characterization and proposal of microbiological quality standard of sand beaches. Water Science and Technology, 27, 453–456.

    Google Scholar 

  • Mudryk, J. Z. (2005). Occurrence and distribution antibiotic resistance of heterotrophic bacteria isolated from a marine beach. Marine Pollution Bulletin, 50(1), 80–86.

    Article  CAS  Google Scholar 

  • NCCLS, National Committee for Clinical Laboratory. (2003). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard-sixth edition. Approved document M7-A6. Wayne, PA.

  • NCCLS, National Committee for Clinical Laboratory Standards. (2004). Performance standards for antimicrobial susceptibility testing, 14th information supplement M100-S14. Wayne, PA. Oberlé, K., Capdeville, M. J., Berthe, T., Budzinski, H., & Petit, F. (2012). Evidence for a complex relationship between antibiotics and antibiotic-resistant Escherichia coli: From Medical Center Patients to a Receiving Environment. Environmental Science and Technology, 46, 1859–1868.

  • Oberlé, K., Capdeville, M. J., Berthe, T., Budzinski, H., & Petit, F. (2012). Evidence for a complex relationship between antibiotics and antibiotic-resistant Escherichia coli: From Medical Center Patients to a Receiving Environment. Environmental Science and Technology, 46, 1859–1868.

    Article  Google Scholar 

  • Oliveira, A. J. F. C., & Pinhata, J. M. (2008). Antimicrobial resistance and species composition of Enterococcus spp. isolated from waters and sands of marine recreational beaches in southern Brazil. Water Research, 42, 2242–2250.

    Article  Google Scholar 

  • Oliveira, A. J. F. C., França, P. T. R., & Pinto, A. B. (2010). Antimicrobial resistance of heterotrophic marine bacteria isolated from seawater and sands of recreational beaches with different organic pollution levels in southeastern Brazil: Evidences of resistance dissemination. Environmental Monitoring and Assessment, 169, 375–384.

    Article  Google Scholar 

  • Papadakis, J. A., Mavridou, A., Richardson, S. C., Lampiri, M., & Marcelou, U. (1997). Bather-related microbial and yeast populations in sand and seawater. Water Research, 31, 799–804.

    Article  CAS  Google Scholar 

  • Pianetti, A., Bruscolini, F., Sabatini, L., & Colantoni, P. (2004). Microbial characteristics of marine sediments in bathing area along Pesaro-Gabicce coast (Italy): a preliminary study. Journal of Applied Microbiology, 97, 682–689.

    Article  CAS  Google Scholar 

  • Rang, H. P., Dale, M. M., & Ritter, J. M., (1999). Pharmacology. Churchill Livingstone, Edinburgh.

  • Sabino, R., Rodrigues, R., Costa, I., Carneiro, C., Cunha, M., Duarte, A., et al. (2014). Routine screeninge of harmfull microorganisms in beach sands: Implications to public health. Science of Total Environment, 472, 1062–1069.

    Article  CAS  Google Scholar 

  • Sato, M. I. Z., Bari, M. D., Lamparelli, C. C., Truzzi, A. C., Coelho, M. C. L. S., & Hachich, E. M. (2005). Sanitary quality of sands from marine recreational beaches of São Paulo, Brazil. Brazilian Journal of Microbiology, 36(4), 321–326.

    Article  Google Scholar 

  • Schwartz, T., Kohnen, W., Jansen, B., & Obst, U. (2003). Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS Microbiology Ecology, 43, 325–335.

    Article  CAS  Google Scholar 

  • Sinton, L. W., Davies-Colley, R. J., & Bell, R. G. (1994). Inactivation of enterococci and fecal coliforms from sewage and meat-works effluents in seawater chambers. Applied Environmental Microbiology, 60(6), 2040–2048.

    CAS  Google Scholar 

  • Villar, C., De Cabro, L., Vaithiyanathan, P., & Bonetto, C. (1999). Pore water N and P concentration in a floodplain marsh of Lower Parana River. Hydrobiologia, 392(1), 65–71.

    Article  CAS  Google Scholar 

  • Wellington, E. M. H., Boxall, A. B. A., Cross, P., Feil, E., Gaze, W. H., Hawkey, P. M., et al. (2013). The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. Lancet Infection Diseases, 13, 155–165.

    Article  CAS  Google Scholar 

  • Whitman, R. L., & Nevers, M. B. (2003). Foreshore sand as a source of Escherichia coli in nearshore water of a Lake Michigan beach. Applied and Environmental Microbiology, 69(9), 5555–5562.

    Article  CAS  Google Scholar 

  • Whitman, R. L., Harwood, V. J., Edge, T. A., Nevers, M. B., Byappanahalli, M., Vijayavel, K., Brandão, J., Sadowsky, M. J., Alm, E. W., Crowe, A., Ferguson, D., Ge, Z., Halliday, E., Kinzelman, J., Kleinheinz, G., Przybyla-Kelly, K., Staley, C., Staley, Z., & Solo-Gabriele, H. M. (2014). Microbes in beach sands: Integrating environment, ecology and public health. Reviews in Environmental Science and Biotechnology, 13, 329–368.

    Article  CAS  Google Scholar 

  • WHO (1998). Guidelines for Safe Recreational Waters - Water Environments. Volume 1: Coastal and Fresh-Waters. WHO/EOS/98.14, World Health Organization, Geneva, 208p.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Julia Fernandes Cardoso de Oliveira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Costa Andrade, V., Del Busso Zampieri, B., Ballesteros, E.R. et al. Densities and antimicrobial resistance of Escherichia coli isolated from marine waters and beach sands.. Environ Monit Assess 187, 342 (2015). https://doi.org/10.1007/s10661-015-4573-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4573-8

Keywords

Navigation