Skip to main content
Log in

A simulation-based approach to assess the power of trend detection in high- and low-frequency water quality records

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

To provide more precise understanding of water quality changes, continuous sampling is being used more in surface water quality monitoring networks. However, it remains unclear how much improvement continuous monitoring provides over spot sampling, in identifying water quality changes over time. This study aims (1) to assess our ability to detect trends using water quality data of both high and low frequencies and (2) to assess the value of using high-frequency data as a surrogate to help detect trends in other constituents. Statistical regression models were used to identify temporal trends and then to assess the trend detection power of high-frequency (15 min) and low-frequency (monthly) data for turbidity and electrical conductivity (EC) data collected across Victoria, Australia. In addition, we developed surrogate models to simulate five sediment and nutrients constituents from runoff, turbidity and EC. A simulation-based statistical approach was then used to the compare the power to detect trends between the low- and high-frequency water quality records. Results show that high-frequency sampling shows clear benefits in trend detection power for turbidity, EC, as well as simulated sediment and nutrients, especially over short data periods. For detecting a 1% annual trend with 5 years of data, up to 97% and 94% improvements on the trend detection probability are offered by high-frequency data compared with monthly data, for turbidity and EC, respectively. Our results highlight the benefits of upgrading monitoring networks with wider application of high-frequency sampling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbott, B. W., Moatar, F., Gauthier, O., Fovet, O., Antoine, V., & Ragueneau, O. (2018). Trends and seasonality of river nutrients in agricultural catchments: 18years of weekly citizen science in France. Science of the Total Environment, 624, 845–858. https://doi.org/10.1016/j.scitotenv.2017.12.176.

    Article  CAS  Google Scholar 

  • Aiken, J. D. (2017). Validity of Chesapeake Bay total maximum daily load upheld. Journal of Soil and Water Conservation, 72(4), 87A–92A.

    Article  Google Scholar 

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723. https://doi.org/10.1109/TAC.1974.1100705.

    Article  Google Scholar 

  • Altenburger, R., Ait-Aissa, S., Antczak, P., Backhaus, T., Barceló, D., Seiler, T.-B., Brion, F., Busch, W., Chipman, K., & De Alda, M. L. (2015). Future water quality monitoring—adapting tools to deal with mixtures of pollutants in water resource management. Science of the Total Environment, 512, 540–551. https://doi.org/10.1016/j.scitotenv.2014.12.057.

    Article  CAS  Google Scholar 

  • Australian Bureau of Meteorology. (2016). Climate data online: average annual, seasonal and monthly rainfall. Retrieved from: http://www.bom.gov.au/jsp/ncc/climate_averages/rainfall/index.jsp.

  • Ballantine, D. J., & Davies-Colley, R. J. (2014). Water quality trends in New Zealand rivers: 1989–2009. Environmental Monitoring and Assessment, 186(3), 1939–1950.

    Article  Google Scholar 

  • Behmel, S., Damour, M., Ludwig, R., & Rodriguez, M. (2016). Water quality monitoring strategies—a review and future perspectives. Science of the Total Environment, 571, 1312–1329. https://doi.org/10.1016/j.scitotenv.2016.06.235.

    Article  CAS  Google Scholar 

  • Bende-Michl, U., & Hairsine, P. B. (2010). A systematic approach to choosing an automated nutrient analyser for river monitoring. Journal of Environmental Monitoring, 12(1), 127–134. https://doi.org/10.1039/B910156J.

    Article  CAS  Google Scholar 

  • Bende-Michl, U., Verburg, K., & Cresswell, H. P. (2013). High-frequency nutrient monitoring to infer seasonal patterns in catchment source availability, mobilisation and delivery. Environmental Monitoring and Assessment, 185(11), 9191–9219. https://doi.org/10.1007/s10661-013-3246-8.

    Article  CAS  Google Scholar 

  • Blaen, P. J., Khamis, K., Lloyd, C. E. M., Bradley, C., Hannah, D., & Krause, S. (2016). Real-time monitoring of nutrients and dissolved organic matter in rivers: capturing event dynamics, technological opportunities and future directions. Science of the Total Environment, 569-570, 647–660. https://doi.org/10.1016/j.scitotenv.2016.06.116.

    Article  CAS  Google Scholar 

  • Broemeling, L. D. (2019). Bayesian analysis of time series. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Burgers, H., Schipper, A. M., & Jan Hendriks, A. (2014). Size relationships of water discharge in rivers: scaling of discharge with catchment area, main-stem length and precipitation. Hydrological Processes, 28(23), 5769–5775.

    Article  Google Scholar 

  • Carlin, B. P., & Chib, S. (1995). Bayesian model choice via Markov chain Monte Carlo methods. Journal of the Royal Statistical Society: Series B: Methodological, 57(3), 473–484.

    Google Scholar 

  • Cassidy, R., & Jordan, P. (2011). Limitations of instantaneous water quality sampling in surface-water catchments: comparison with near-continuous phosphorus time-series data. Journal of Hydrology, 405(1–2), 182–193.

    Article  CAS  Google Scholar 

  • Chappell, N. A., Jones, T. D., & Tych, W. (2017). Sampling frequency for water quality variables in streams: systems analysis to quantify minimum monitoring rates. Water Research, 123, 49–57. https://doi.org/10.1016/j.watres.2017.06.047.

    Article  CAS  Google Scholar 

  • Cooper, R. J., Outram, F. N., & Hiscock, K. M. (2016). Diel turbidity cycles in a headwater stream: evidence of nocturnal bioturbation? Journal of Soils and Sediments, 16(6), 1815–1824. https://doi.org/10.1007/s11368-016-1372-y.

    Article  CAS  Google Scholar 

  • Cryer, J. D., & Chan, K.-S. (2008). Time series analysis: with applications in R. Berlin: Springer Science & Business Media.

    Book  Google Scholar 

  • Darken, P. F., Zipper, C. E., Holtzman, G. I., & Smith, E. P. (2002). Serial correlation in water quality variables: estimation and implications for trend analysis. Water Resources Research, 38(7), 22-21–22-27.

    Article  Google Scholar 

  • Diamantini, E., Lutz, S. R., Mallucci, S., Majone, B., Merz, R., & Bellin, A. (2018). Driver detection of water quality trends in three large European river basins. Science of the Total Environment, 612, 49–62. https://doi.org/10.1016/j.scitotenv.2017.08.172.

    Article  CAS  Google Scholar 

  • Ehrhardt, S., Kumar, R., Fleckenstein, J. H., Attinger, S., & Musolff, A. (2019). Trajectories of nitrate input and output in three nested catchments along a land use gradient. Hydrology and Earth System Sciences, 23(9), 3503–3524. https://doi.org/10.5194/hess-23-3503-2019.

    Article  CAS  Google Scholar 

  • El Najjar, P., Kassouf, A., Probst, A., Probst, J.-L., Ouaini, N., Daou, C., & El Azzi, D. (2019). High-frequency monitoring of surface water quality at the outlet of the Ibrahim River (Lebanon): a multivariate assessment. Ecological Indicators, 104, 13–23.

    Article  Google Scholar 

  • Esterby, S. R. (1996). Review of methods for the detection and estimation of trends with emphasis on water quality applications. Hydrological Processes, 10(2), 127–149.

    Article  Google Scholar 

  • Ewane, E. B. (2020). Assessing land use and landscape factors as determinants of water quality trends in Nyong River basin, Cameroon. Environmental Monitoring and Assessment, 192(8), 507. https://doi.org/10.1007/s10661-020-08448-2.

    Article  CAS  Google Scholar 

  • Fabricius, K. E. (2005). Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Marine Pollution Bulletin, 50(2), 125–146. https://doi.org/10.1016/j.marpolbul.2004.11.028.

    Article  CAS  Google Scholar 

  • Faruk, D. Ö. (2010). A hybrid neural network and ARIMA model for water quality time series prediction. Engineering Applications of Artificial Intelligence, 23(4), 586–594.

    Article  Google Scholar 

  • Gelman, A., Stern, H. S., Carlin, J. B., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis. Boca Raton: Chapman and Hall/CRC.

    Book  Google Scholar 

  • Geoscience Australia. (2011). Environmental attributes dataset. Retrieved from: http://www.ga.gov.au.

  • Glibert, P. M., Beusen, A. H., Harrison, J. A., Dürr, H. H., Bouwman, A. F., & Laruelle, G. G. (2018). Changing land-, sea-, and airscapes: sources of nutrient pollution affecting habitat suitability for harmful algae Global Ecology and Oceanography of Harmful Algal Blooms (pp. 53-76). Berlin: Springer.

  • Godsey, S. E., Aas, W., Clair, T. A., De Wit, H. A., Fernandez, I. J., Kahl, J. S., Malcolm, I. A., Neal, C., Neal, M., & Nelson, S. J. (2010). Generality of fractal 1/f scaling in catchment tracer time series, and its implications for catchment travel time distributions. Hydrological Processes, 24(12), 1660–1671. https://doi.org/10.1002/hyp.7677.

    Article  CAS  Google Scholar 

  • Grayson, R., Finlayson, B. L., Gippel, C., & Hart, B. (1996). The potential of field turbidity measurements for the computation of total phosphorus and suspended solids loads. Journal of Environmental Management, 47(3), 257–267. https://doi.org/10.1006/jema.1996.0051.

    Article  Google Scholar 

  • Guo, D., Lintern, A., Webb, J. A., Ryu, D., Liu, S., Bende-Michl, U., Leahy, P., Wilson, P., & Western, A. (2019). Key factors affecting temporal variability in stream water quality. Water Resources Research, 55(1), 112–129. https://doi.org/10.1029/2018WR023370.

    Article  CAS  Google Scholar 

  • Gurbisz, C., & Kemp, W. M. (2014). Unexpected resurgence of a large submersed plant bed in Chesapeake Bay: analysis of time series data. Limnology and Oceanography, 59(2), 482–494.

    Article  CAS  Google Scholar 

  • Halliday, S. J., Wade, A. J., Skeffington, R. A., Neal, C., Reynolds, B., Rowland, P., Neal, M., & Norris, D. (2012). An analysis of long-term trends, seasonality and short-term dynamics in water quality data from Plynlimon, Wales. Science of the Total Environment, 434, 186–200.

    Article  CAS  Google Scholar 

  • Harris, G. P. (2001). Biogeochemistry of nitrogen and phosphorus in Australian catchments, rivers and estuaries: effects of land use and flow regulation and comparisons with global patterns. Marine and Freshwater Research, 52(1), 139–149. https://doi.org/10.1071/MF00031.

    Article  CAS  Google Scholar 

  • Harvey, A. C. (1990). Forecasting, structural time series models and the Kalman filter. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Hirsch, R. M., Moyer, D. L., & Archfield, S. A. (2010). Weighted regressions on time, discharge, and season (WRTDS), with an application to Chesapeake Bay river inputs 1. JAWRA Journal of the American Water Resources Association, 46(5), 857–880.

    Article  Google Scholar 

  • Horsburgh, J. S., Jones, A. S., Stevens, D. K., Tarboton, D. G., & Mesner, N. O. (2010). A sensor network for high frequency estimation of water quality constituent fluxes using surrogates. Environmental Modelling & Software, 25(9), 1031–1044. https://doi.org/10.1016/j.envsoft.2009.10.012.

    Article  Google Scholar 

  • Julian, J. P., De Beurs, K. M., Owsley, B., Davies-Colley, R. J., & Ausseil, A.-G. E. (2017). River water quality changes in New Zealand over 26 years: response to land use intensity. Hydrology and Earth System Sciences, 21(2), 1149–1171.

    Article  CAS  Google Scholar 

  • Kirchner, J. W., Feng, X., Neal, C., & Robson, A. J. (2004). The fine structure of water-quality dynamics: the (high-frequency) wave of the future. Hydrological Processes, 18(7), 1353–1359. https://doi.org/10.1002/hyp.5537.

    Article  Google Scholar 

  • Leigh, C., Kandanaarachchi, S., Mcgree, J. M., Hyndman, R. J., Alsibai, O., Mengersen, K., & Peterson, E. E. (2019). Predicting sediment and nutrient concentrations from high-frequency water-quality data. PLoS One, 14(8), e0215503. https://doi.org/10.1371/journal.pone.0215503.

    Article  CAS  Google Scholar 

  • Lessels, J., & Bishop, T. (2015). A simulation based approach to quantify the difference between event-based and routine water quality monitoring schemes. Journal of Hydrology: Regional Studies, 4, 439–451.

    Google Scholar 

  • Lintern, A., Webb, J., Ryu, D., Liu, S., Waters, D., Leahy, P., Bende-Michl, U., & Western, A. (2018). What are the key catchment characteristics affecting spatial differences in riverine water quality? Water Resources Research, 54(10), 7252–7272. https://doi.org/10.1029/2017WR022172.

    Article  Google Scholar 

  • Liu, S., Ryu, D., Webb, J., Lintern, A., Waters, D., Guo, D., & Western, A. (2018). Characterisation of spatial variability in water quality in the Great Barrier Reef catchments using multivariate statistical analysis. Marine Pollution Bulletin, 137, 137–151. https://doi.org/10.1016/j.marpolbul.2018.10.019.

    Article  CAS  Google Scholar 

  • Mainali, J., & Chang, H. (2018). Landscape and anthropogenic factors affecting spatial patterns of water quality trends in a large river basin, South Korea. Journal of Hydrology, 564, 26–40. https://doi.org/10.1016/j.jhydrol.2018.06.074.

    Article  CAS  Google Scholar 

  • Mccloskey, G., Waters, D., Baheerathan, R., Darr, S., Dougall, C., Ellis, R., Fentie, B., & Hateley, L. (2017). Modelling reductions of pollutant loads due to improved management practices in the great barrier reef catchments: updated methodology and results-technical report for reef report card 2015. Queensland Department of Natural Resources and Mines, Brisbane, Queensland.

  • Minaudo, C., Moatar, F., Coynel, A., Etcheber, H., Gassama, N., & Curie, F. (2016). Using recent high-frequency surveys to reconstitute 35 years of organic carbon variations in a eutrophic lowland river. Environmental Monitoring and Assessment, 188(1), 41.

    Article  CAS  Google Scholar 

  • Musolff, A., Schmidt, C., Selle, B., & Fleckenstein, J. H. (2015). Catchment controls on solute export. Advances in Water Resources, 86, 133–146. https://doi.org/10.1016/j.advwatres.2015.09.026.

    Article  CAS  Google Scholar 

  • Naddafi, K., Honari, H., & Ahmadi, M. (2007). Water quality trend analysis for the Karoon River in Iran. Environmental Monitoring and Assessment, 134(1–3), 305–312.

    Article  CAS  Google Scholar 

  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — a discussion of principles. Journal of Hydrology, 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6.

    Article  Google Scholar 

  • Neath, A. A., & Cavanaugh, J. E. (2012). The Bayesian information criterion: background, derivation, and applications. Wiley Interdisciplinary Reviews: Computational Statistics, 4(2), 199–203.

    Article  Google Scholar 

  • Oelsner, G. P., Sprague, L. A., Murphy, J. C., Zuellig, R. E., Johnson, H. M., Ryberg, K. R., Falcone, J. A., Stets, E. G., Vecchia, A. V., & Riskin, M. L. (2017). Water-quality trends in the nation’s rivers and streams, 1972–2012—data preparation, statistical methods, and trend results (2328–0328). Retrieved from

  • Ouyang, W., Gao, X., Wei, P., Gao, B., Lin, C., & Hao, F. (2017). A review of diffuse pollution modeling and associated implications for watershed management in China. Journal of Soils and Sediments, 17(6), 1527–1536.

    Article  CAS  Google Scholar 

  • Parr, T. W., Sier, A. R., Battarbee, R., Mackay, A., & Burgess, J. (2003). Detecting environmental change: science and society—perspectives on long-term research and monitoring in the 21st century. Science of the Total Environment, 310(1–3), 1–8. https://doi.org/10.1016/S0048-9697(03)00257-2.

    Article  CAS  Google Scholar 

  • Patton, C. J. (2006). Autonomous environmental water quality monitoring the future of continuous flow analysis. Environmental Chemistry, 3(1), 1–2. https://doi.org/10.1071/EN06003.

    Article  CAS  Google Scholar 

  • Peel, M. C., Finlayson, B. L., & Mcmahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions, 4(2), 439–473. https://doi.org/10.5194/hess-11-1633-2007.

    Article  Google Scholar 

  • Plummer, M. (2013). JAGS: just another Gibbs sampler, version 3.4. 0. http://mcmc-jags.sourceforge.net.

  • Read, E. K., Carr, L., De Cicco, L., Dugan, H. A., Hanson, P. C., Hart, J. A., Kreft, J., Read, J. S., & Winslow, L. A. (2017). Water quality data for national-scale aquatic research: the Water Quality Portal. Water Resources Research, 53(2), 1735–1745.

    Article  Google Scholar 

  • Robertson, D. M., & Roerish, E. D. (1999). Influence of various water quality sampling strategies on load estimates for small streams. Water Resources Research, 35(12), 3747–3759. https://doi.org/10.1029/1999WR900277.

    Article  CAS  Google Scholar 

  • Robertson, D. M., Hubbard, L. E., Lorenz, D. L., & Sullivan, D. J. (2018). A surrogate regression approach for computing continuous loads for the tributary nutrient and sediment monitoring program on the Great Lakes. Journal of Great Lakes Research, 44(1), 26–42. https://doi.org/10.1016/j.jglr.2017.10.003.

    Article  CAS  Google Scholar 

  • Rügner, H., Schwientek, M., Beckingham, B., Kuch, B., & Grathwohl, P. (2013). Turbidity as a proxy for total suspended solids (TSS) and particle facilitated pollutant transport in catchments. Environmental Earth Sciences, 69(2), 373–380. https://doi.org/10.1007/s12665-013-2307-1.

    Article  CAS  Google Scholar 

  • Schilling, K. E., Kim, S.-W., & Jones, C. S. (2017). Use of water quality surrogates to estimate total phosphorus concentrations in Iowa rivers. Journal of Hydrology: Regional Studies, 12, 111–121. https://doi.org/10.1016/j.ejrh.2017.04.006.

    Article  Google Scholar 

  • Schleppi, P., Waldner, P. A., & Fritschi, B. (2006). Accuracy and precision of different sampling strategies and flux integration methods for runoff water: comparisons based on measurements of the electrical conductivity. Hydrological Processes: An International Journal, 20(2), 395–410. https://doi.org/10.1002/hyp.6057.

    Article  Google Scholar 

  • Shi, B., Wang, P., Jiang, J., & Liu, R. (2018). Applying high-frequency surrogate measurements and a wavelet-ANN model to provide early warnings of rapid surface water quality anomalies. Science of the Total Environment, 610, 1390–1399. https://doi.org/10.1016/j.scitotenv.2017.08.232.

    Article  CAS  Google Scholar 

  • Shoda, M. E., Sprague, L. A., Murphy, J. C., & Riskin, M. L. (2019). Water-quality trends in US rivers, 2002 to 2012: relations to levels of concern. Science of the Total Environment, 650, 2314–2324.

    Article  CAS  Google Scholar 

  • Skoulikidis, N. T., Amaxidis, Y., Bertahas, I., Laschou, S., & Gritzalis, K. (2006). Analysis of factors driving stream water composition and synthesis of management tools—a case study on small/medium Greek catchments. Science of the Total Environment, 362(1–3), 205–241. https://doi.org/10.1016/j.scitotenv.2005.05.018.

    Article  CAS  Google Scholar 

  • Smith, A. P., Western, A. W., & Hannah, M. C. (2013). Linking water quality trends with land use intensification in dairy farming catchments. Journal of Hydrology, 476, 1–12.

    Article  CAS  Google Scholar 

  • Smith, A., Duffy, B., Onion, A., Heitzman, D., Lojpersberger, J., Mosher, E., & Novak, M. (2018). Long-term trends in biological indicators and water quality in rivers and streams of New York State (1972–2012). River Research and Applications, 34(5), 442–450.

    Article  Google Scholar 

  • Strobl, R. O., & Robillard, P. D. (2008). Network design for water quality monitoring of surface freshwaters: a review. Journal of Environmental Management, 87(4), 639–648. https://doi.org/10.1016/j.jenvman.2007.03.001.

    Article  Google Scholar 

  • Sturtz, S., Ligges, U., & Gelman, A. E. (2005). R2WinBUGS: a package for running WinBUGS from R.

  • Team R Core. (2013). R: a language and environment for statistical computing.

  • Usgs. (2019). National Water-Quality Assessment (NAWQA). Retrieved from https://www.usgs.gov/mission-areas/water-resources/science/national-water-quality-assessment-nawqa?qt-science_center_objects=0#qt-science_center_objects.

  • Van Grieken, M., Roebeling, P., Bohnet, I., Whitten, S., Webster, A., Poggio, M., & Pannell, D. (2019). Adoption of agricultural management for Great Barrier Reef water quality improvement in heterogeneous farming communities. Agricultural Systems, 170, 1–8. https://doi.org/10.1016/j.agsy.2018.12.003.

    Article  Google Scholar 

  • Victoria Delwp. (2016). Victorian water measurement information system. http://data.water.vic.gov.au/monitoring.htm.

  • Viviano, G., Salerno, F., Manfredi, E. C., Polesello, S., Valsecchi, S., & Tartari, G. (2014). Surrogate measures for providing high frequency estimates of total phosphorus concentrations in urban watersheds. Water Research, 64, 265–277.

    Article  CAS  Google Scholar 

  • Voulvoulis, N., Arpon, K. D., & Giakoumis, T. (2017). The EU Water Framework Directive: from great expectations to problems with implementation. Science of the Total Environment, 575, 358–366.

    Article  CAS  Google Scholar 

  • Wang, Y.-G., Wang, S. S., & Dunlop, J. (2015). Statistical modelling and power analysis for detecting trends in total suspended sediment loads. Journal of Hydrology, 520, 439–447. https://doi.org/10.1016/j.jhydrol.2014.10.062.

    Article  Google Scholar 

  • Yang, G., & Moyer, D. L. (2020). Estimation of nonlinear water-quality trends in high-frequency monitoring data. Science of the Total Environment, 715, 136686.

    Article  CAS  Google Scholar 

  • Zhang, Q., & Blomquist, J. D. (2018). Watershed export of fine sediment, organic carbon, and chlorophyll-a to Chesapeake Bay: spatial and temporal patterns in 1984–2016. Science of the Total Environment, 619, 1066–1078. https://doi.org/10.1016/j.scitotenv.2017.10.279.

    Article  CAS  Google Scholar 

  • Zhang, Q., & Hirsch, R. M. (2019). River water-quality concentration and flux estimation can be improved by accounting for serial correlation through an autoregressive model. Water Resources Research, 55, 9705–9723.

    Article  Google Scholar 

  • Zhang, Q., Brady, D. C., & Ball, W. P. (2013). Long-term seasonal trends of nitrogen, phosphorus, and suspended sediment load from the non-tidal Susquehanna River Basin to Chesapeake Bay. Science of the Total Environment, 452, 208–221. https://doi.org/10.1016/j.scitotenv.2013.02.012.

    Article  CAS  Google Scholar 

  • Zimmer, M. A., Pellerin, B., Burns, D. A., & Petrochenkov, G. (2019). Temporal variability in nitrate-discharge relationships in large rivers as revealed by high-frequency data. Water Resources Research, 55(2), 973–989. https://doi.org/10.1029/2018WR023478.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the efforts of the Victorian DELWP who provided both low- and high-frequency water quality monitoring data used in this study.

Funding

This study was financially supported by the Victorian Department of Environment, Land, Water and Planning (DELWP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuci Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 14.6 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Guo, D., Webb, J.A. et al. A simulation-based approach to assess the power of trend detection in high- and low-frequency water quality records. Environ Monit Assess 192, 628 (2020). https://doi.org/10.1007/s10661-020-08592-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08592-9

Keywords

Navigation