Skip to main content

Advertisement

Log in

Habitat potential modelling and mapping of Teucrium polium using machine learning techniques

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Determining suitable habitats is important for the successful management and conservation of plant and wildlife species. Teucrium polium L. is a wild plant species found in Iran. It is widely used to treat numerous health problems. The range of this plant is shrinking due to habitat destruction and overexploitation. Therefore, habitat suitability (HS) modeling is critical for conservation. HS modeling can also identify the key characteristics of habitats that support this species. This study models the habitats of T. polium using five data mining models: random forest (RF), flexible discriminant analysis (FDA), multivariate adaptive regression splines (MARS), support vector machine (SVM), and generalized linear model (GLM). A total of 119 T. poliumlocations were identified and mapped. According to the RF model, the most important factors describing T. polium habitat were elevation, soil texture, and mean annual rainfall. HS maps (HSMs) were prepared, and habitat suitability was classified as low, medium, high, or very high. The percentages of the study area assigned high or very high suitability ratings by each of the models were 44.62% for FDA, 43.75% for GLM, 43.12% for SVM, 38.91% for RF, 28.72% for MARS, and 39.16% for their ensemble. Although the six models were reasonably accurate, the ensemble model had the highest AUC value, demonstrating a strong predictive performance. The rank order of the other models in this regard is RF, MARS, SVM, FDA, and GLM. HSMs can provide useful output to support the sustainable management of rangelands, reclamation, and land protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data used in this study are available for researchers upon request to the corresponding author for reasonable use in the research.

References

  • Abdelaal, M., Fois, M., Dakhil, M. A., Bacchetta, G., & El-Sherbeny, G. A. (2020). Predicting the potential current and future distribution of the endangered endemic vascular plant Primula Boveana Decne. ex Duby in Egypt. Plants, 9(8), 957.

  • Abdollahi, J., Naderi, H., Mirjalili, M. R., & Tabatabaeezadeh, M. S. (2013). Effects of some environmental factors on growth characteristics of Stipa barbata species in steppe rangelands of Nodoushan-Yazd. Iranian Journal of Range and Desert Research, 20(1), 130–144.

    Google Scholar 

  • Akinci, H., Doğan, S., Kiliccedil, C., & Temiz, M. S. (2011). Production of landslide susceptibility map of Samsun (Turkey) City Center by using frequency ratio method. International Journal of Physical Sciences, 6(5), 1015-1025.

  • Alves, R. R., & Rosa, I. L. (2005). Why study the use of animal products in traditional medicines? Journal of Ethnobiology and Ethnomedicine, 1(1), 1–5. https://doi.org/10.1186/1746-4269-1-5

    Article  Google Scholar 

  • Amraei, M., Ghorbani, A., Seifinejad, Y., Mousavi, S. F., Mohamadpour, M., & Shirzadpour, E. (2018). The effect of hydroalcoholic extract of Teucrium polium L. on the inflammatory markers and lipid profile in hypercholesterolemic rats. Journal of inflammation research11, 265. https://doi.org/10.2147/JIR.S165172

  • Araújo, M. B., & New, M. (2007). Ensemble forecasting of species distributions. Trends in Ecology & Evolution, 22(1), 42–47.

    Article  Google Scholar 

  • Austin, M. P. (2002). Spatial prediction of species distribution: An interface between ecological theory and statistical modelling. Ecological Modelling, 157(2–3), 101–118. https://doi.org/10.1016/S0304-3800(02)00205-3

    Article  Google Scholar 

  • Bahramikia, S., & Yazdanparast, R. (2012). Phytochemistry and medicinal properties of Teucrium polium L.(Lamiaceae). Phytotherapy Research26(11), 1581–1593. https://doi.org/10.1002/ptr.4617

  • Ballabio, C., & Sterlacchini, S. (2012). Support vector machines for landslide susceptibility mapping: the Staffora River Basin case study, Italy. Mathematical geosciences44(1), 47–70. https://doi.org/10.1007/s11004-011-9379-9

  • Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., & Courchamp, F. (2012). Impacts of climate change on the future of biodiversity. Ecology Letters, 15(4), 365-377.

  • Belmekki, N., & Bendimerad, N. (2012). Antioxidant activity and phenolic content in methanol crude extracts from three Lamiaceae grown in southwestern Algeria. Journal of Natural Product Plant Resources, 2(1), 175–181.

  • Bonham-Carter, G. E., & Cox, S. J. D. (1995). Geographic information systems for geoscientists: Modelling with GIS. Economic Geology, 90, 1352–1353.

    Google Scholar 

  • Bonnier, G., Douin, R., & Poinsot, J. (1990). [La grande flore en couleurs]; La grande flore en couleurs de Gaston Bonnier: France, Suisse, Belgique et pays voisins. Belin.

  • Bradie, J., & Leung, B. (2017). A quantitative synthesis of the importance of variables used in MaxEnt species distribution models. Journal of Biogeography, 44(6), 1344–1361. https://doi.org/10.1111/jbi.12894

    Article  Google Scholar 

  • Brady N. C., Weil R. R. (2007). Nature and Properties of Soils: Prentice Hall.

  • Bradter, U., Kunin, W. E., Altringham, J. D., Thom, T. J., & Benton, T. G. (2013). Identifying appropriate spatial scales of predictors in species distribution models with the random forest algorithm. Methods in Ecology and Evolution, 4, 167–174.

    Article  Google Scholar 

  • Bremmer, J. M., & Mulvaney, C. S. (1982). Total N. Methods of Soil Analysis. Part, 2, 895–926.

    Google Scholar 

  • Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32.

    Article  Google Scholar 

  • Breiner, F. T., Guisan, A., Bergamini, A., & Nobis, M. P. (2015). Overcoming limitations of modelling rare species by using ensembles of small models. Methods in Ecology and Evolution, 6(10), 1210–1218. https://doi.org/10.1111/2041-210X.12403

    Article  Google Scholar 

  • Brown, G. (2010). Ensemble Learning. Encyclopedia of Machine Learning, 312, 15–19.

    Google Scholar 

  • Całka, B. (2018). Comparing continuity and compactness of choropleth map classes. Geodesy and Cartography67(1). https://doi.org/10.24425/118704

  • Carminati, A., Kaestner, A., Lehmann, P., & Flühler, H. (2008). Unsaturated water fow across soil aggregate contacts. Advances in Water Resources, 31, 1221–1232.

    Article  Google Scholar 

  • Carter, M.R. (2008). Soil sampling and methods of analysis. CRC Press.

  • Chen, S. L., Yu, H., Luo, H. M., Wu, Q., Li, C. F., & Steinmetz, A. (2016). Conservation and sustainable use of medicinal plants: Problems, progress, and prospects. Chinese Medicine, 11(1), 1–10.

    Article  Google Scholar 

  • Crimmins, S. M., Dobrowski, S. Z., & Mynsberge, A. R. (2013). Evaluating ensemble forecasts of plant species distributions under climate change. Ecological Modelling, 266, 126–130.

    Article  Google Scholar 

  • Coste, H. (1990). Flore descriptive et illustrée de la France, de la Corse et des contrées l imitrophes. Librairie Blanchard: Paris; 139–140.

  • Dang, A. T., Kumar, L., & Reid, M. (2020). Modelling the Potential Impacts of Climate Change on Rice Cultivation in Mekong Delta, Vietnam. Sustainability12(22), 9608. https://doi.org/10.3390/su12229608

  • Deichmann, J., Eshghi, A., Haughton, D., Sayek, S., & Teebagy, N. (2002). Application of multiple adaptive regression splines (MARS) in direct response modeling. Journal of Interactive Marketing, 16(4), 15–27. https://doi.org/10.1002/dir.10040

    Article  Google Scholar 

  • Demir, G., Aytekin, M., Akgün, A., Ikizler, S. B., & Tatar, O. (2013). A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods. Natural Hazards, 65, 1481–1506.

    Article  Google Scholar 

  • Dong, N. M., Brandt, K. K., Sørensen, J., Hung, N. N., Van Hach, C., Tan, P. S., & Dalsgaard, T. (2012). Effects of alternating wetting and drying versus continuous flooding on fertilizer nitrogen fate in rice fields in the Mekong Delta. Vietnam. Soil Biology and Biochemistry, 47, 166–174. https://doi.org/10.1016/j.soilbio.2011.12.028

    Article  CAS  Google Scholar 

  • Dubuis, A., Giovanettina, S., Pellissier, L., Pottier, J., Vittoz, P., & Guisan, A. (2013). Improving the prediction of plant species distribution and community composition by adding edaphic to topo-climatic variables. Journal of Vegetation Science, 24(4), 593–606. https://doi.org/10.1111/jvs.12002

    Article  Google Scholar 

  • Elith, J., H. Graham, C., P. Anderson, R., Dudík, M., Ferrier, S., Guisan, A., Zimmermann, N. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography29(2), 129-151.

  • El-Gabbas, A., & Dormann, C. F. (2018). Wrong, but useful: Regional species distribution models may not be improved by range-wide data under biased sampling. Ecology and Evolution, 8(4), 2196–2206.

    Article  Google Scholar 

  • Evans, J.S.; Murphy, M.A.; Holden, Z.A.; Cushman, S.A. (2011). Modeling species distribution and change using random forest. In Predictive Species and Habitat Modeling in Landscape Ecology; Drew, C.A., Ed.; Springer: Berlin/Heidelberg, Germany, pp. 139–159.

  • Fang, Y., Liu, Y., Huang, C., & Liu, L. (2020). FastEmbed: Predicting vulnerability exploitation possibility based on ensemble machine learning algorithm. Plos One, 15(2), e0228439.

  • Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24(1), 38–49.

  • Franklin, J. (2010). Mapping species distributions: Spatial inference and prediction. Cambridge University Press.

    Book  Google Scholar 

  • Friedman, J. H. (1991). Estimating functions of mixed ordinal and categorical variables using adaptive splines. Stanford Univ CA Lab for Computational Statistics.

  • Friedman, J. H., & Popescu, B. E. (2008). Predictive learning via rule ensembles. The Annals of Applied Statistics, 2(3), 916–954.

    Article  Google Scholar 

  • Gama, M., Crespo, D., Dolbeth, M., & Anastácio, P. (2016). Predicting global habitat suitability for Corbicula fluminea using species distribution models: The importance of di_erent environmental datasets. Ecological Modelling, 319, 163–169.

    Article  Google Scholar 

  • Garzon, M. B., Blazek, R., Neteler, M., De Dios, R. S., Ollero, H. S., & Furlanello, C. (2006). Predicting habitat suitability with machine learning models: the potential area of Pinus sylvestris L. in the Iberian Peninsula. Ecological modelling197(3–4), 383–393. https://doi.org/10.1016/j.ecolmodel.2006.03.015

  • Ghaedi, M., Ghaedi, A. M., Negintaji, E., Ansari, A., Vafaei, A., & Rajabi, M. (2014). Random forest model for removal of bromophenol blue using activated carbon obtained from Astragalus bisulcatus tree. Journal of Industrial and Engineering Chemistry, 20, 1793–1803.

    Article  CAS  Google Scholar 

  • Gharaibeh, M. N., Elayan, H. H., & Salhab, A. S. (1988). Hypoglycemic effects of Teucrium polium. Journal of Ethnopharmacology, 24(1), 93–99. https://doi.org/10.1016/0378-8741(88)90139-0

    Article  CAS  Google Scholar 

  • Ghareghan, F., Ghanbarian, G., Pourghasemi, H. R., & Safaeian, R. (2020). Prediction of habitat suitability of Morina persica L. species using artificial intelligence techniques. Ecological Indicators, 112, 106096.

  • Gregorutti, B., Michel, B., & Saint-Pierre, P. (2017). Correlation and variable importance in random forests. Statistics and Computing, 27(3), 659–678.

    Article  Google Scholar 

  • Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135(2–3), 147–186.

    Article  Google Scholar 

  • Hao, T., Elith, J., Lahoz-Monfort, J. J., & Guillera-Arroita, G. (2020). Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models. Ecography, 43(4), 549–558.

    Article  Google Scholar 

  • Hastie, T., Tibshirani, R., & Andreas, B. (1999). Flexible discriminant and mixture models. Statistics and neural networks: advances at the interface, 1-23.

  • Hastie, T., Tibshirani, R., & Buja, A. (1994). Flexible discriminant analysis by optimal scoring. Journal of the American Statistical Association, 89(428), 1255–1270.

    Article  Google Scholar 

  • Hosseini, S. H., Azarnivand, H., Ayyari, M., Chahooki, M. A. Z., Erfanzadeh, R., Piacente, S., & Kheirandish, R. (2018). Modeling potential habitats for Pergularia tomentosa using maximum entropy model and effect of environmental variables on its quantitative characteristics in arid rangelands, southeastern Iran. Journal of Ecology and Environment, 42(1), 1–13. https://doi.org/10.1186/s41610-018-0083-2

    Article  Google Scholar 

  • Helliwell, J. R., Sturrock, C. J., Mairhofer, S., Craigon, J., Ashton, R. W., Miller, A. J., & Mooney, S. J. (2017). The emergent rhizosphere: Imaging the development of the porous architecture at the root-soil interface. Scientific Reports, 7(1), 1–10.

    Article  CAS  Google Scholar 

  • Jenks, G. F. (1963). Class intervals for statistical maps. Int Yearbook Cartography, 3, 119–134.

    Google Scholar 

  • Kabir, M., Hameed, S., Ali, H., Bosso, L., Din, J. U., Bischof, R., ... & Nawaz, M. A. (2017). Habitat suitability and movement corridors of grey wolf (Canis lupus) in Northern Pakistan. PloS one12(11), e0187027.

  • Kalantar, B., Ueda, N., Saeidi, V., Ahmadi, K., Halin, A. A., & Shabani, F. (2020). Landslide susceptibility mapping: Machine and ensemble learning based on remote sensing big data. Remote Sensing, 12(11), 1737. https://doi.org/10.3390/rs12111737

    Article  Google Scholar 

  • Karami, S., & Khosravi, A. R. (2019). A Floristic Study of Kuh-e Dakal in Mamasani County, Fars Province. Journal of Taxonomy and Biosystematics, 11(39), 1–12.

  • Kavzoglu, T., Colkesen, I., & Sahin, E. K. (2019). Machine learning techniques in landslide susceptibility mapping: A survey and a case study. Landslides: Theory, practice and modelling, 283–301. https://doi.org/10.1007/978-3-319-77377-3_13

  • Khan, M., Khan, S. M., Ilyas, M., Alqarawi, A. A., Ahmad, Z., & Abd_Allah, E. F. (2017). Plant species and communities assessment in interaction with edaphic and topographic factors; an ecological study of the mount Eelum District Swat, Pakistan. Saudi journal of biological sciences24(4), 778-786.

  • Khazaei, M., Ranjbar, A., Esfarjani, K., Bogdanovski, D., Dronskowski, R., & Yunoki, S. (2018). Insights into exfoliation possibility of MAX phases to MXenes. Physical Chemistry Chemical Physics, 20(13), 8579–8592. https://doi.org/10.1039/C7CP08645H

    Article  CAS  Google Scholar 

  • Kumar, R., & Indrayan, A. (2011). Receiver operating characteristic (ROC) curve for medical researchers. Indian Pediatrics, 48(4), 277–287.

    Article  Google Scholar 

  • Landmann, T., Dubovyk, O., Ghazaryan, G., Kimani, J., & Abdel-Rahman, E. M. (2020). Wide-area invasive species propagation mapping is possible using phenometric trends. ISPRS Journal of Photogrammetry and Remote Sensing, 159, 1–12. https://doi.org/10.1016/j.isprsjprs.2019.10.016

    Article  Google Scholar 

  • Lee, M. J., Song, W., & Lee, S. (2015). Habitat mapping of the leopard cat (Prionailurus bengalensis) in South Korea using GIS. Sustainability, 7, 4668–4688.

    Article  Google Scholar 

  • Lee, W., Stolfo, S., & Mok, K. W. (1998). Mining audit data to build intrusion detection models.

  • Li, X., & Wang, Y. (2013). Applying various algorithms for species distribution modelling. Integrative Zoology, 8(2), 124-135.

  • Liu, H., & Cocea, M. (2017). Semi-random partitioning of data into training and test sets in granular computing context. Granular Computing, 2(4), 357–386.

  • Liu, J., Yang, Y., Wei, H., Zhang, Q., Zhang, X., Zhang, X., & Gu, W. (2019). Assessing habitat suitability of parasitic plant Cistanche deserticola in northwest China under future climate scenarios. Forests, 10(9), 823.

  • Ma, Y., Jiang, Q., Meng, Z., Li, Y. H., Wang, D., & Liu, H. (2016). Classification of land use in farming area based on random forest algorithm. Transactions of the Chinese Society of Agricultural Machinery47(1), 297-303.

  • McPherson, J. M., & Jetz, W. (2007). Type and spatial structure of distribution data and the perceived determinants of geographical gradients in ecology: The species richness of African birds. Global Ecology and Biogeography, 16(5), 657–667. https://doi.org/10.1111/j.1466-8238.2007.00318.x

    Article  Google Scholar 

  • Milborrow, S., Hastie, T., & Tibshirani, R. (2016). Earth: Multivariate Adaptive Regression Spline Models. R Software Package.

  • Mollalo, A., Sadeghian, A., Israel, G. D., Rashidi, P., Sofizadeh, A., & Glass, G. E. (2018). Machine learning approaches in GIS-based ecological modeling of the sand fly Phlebotomus papatasi, a vector of zoonotic cutaneous leishmaniasis in Golestan province. Iran. Acta Tropica, 188, 187–194. https://doi.org/10.1016/j.actatropica.2018.09.004

    Article  Google Scholar 

  • Morisette, J. T., Reaser, J. K., Cook, G. L., Irvine, K. M., & Roy, H. E. (2020). Right place. Right time. Right tool: guidance for using target analysis to increase the likelihood of invasive species detection. Biological Invasions22(1), 67–74. https://doi.org/10.1007/s10530-019-02145-z

  • Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 247–259. https://doi.org/10.1016/j.isprsjprs.2010.11.001

    Article  Google Scholar 

  • Mousazade, M., Ghanbarian, G., Pourghasemi, H. R., Safaeian, R., & Cerdà, A. (2019). Maxent data mining technique and its comparison with a bivariate statistical model for predicting the potential distribution of Astragalus Fasciculifolius Boiss. in Fars, Iran. Sustainability, 11(12), 3452. https://doi.org/10.3390/su11123452

  • Naimi, B., & Araújo, M. B. (2016). sdm: A reproducible and extensible R platform for species distribution modelling. Ecography, 39(4), 368–375. https://doi.org/10.1111/ecog.01881

    Article  Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 3 Chemical methods, 5, 961–1010.

  • Nguyen, P. T., Tuyen, T. T., Shirzadi, A., Pham, B. T., Shahabi, H., Omidvar, E., & Bui, D. T. (2019). Development of a novel hybrid intelligence approach for landslide spatial prediction. Applied Sciences, 9(14), 2824. https://doi.org/10.3390/app9142824

    Article  Google Scholar 

  • Nosetto, M. D., Jobbágy, E. G., & Paruelo, J. M. (2006). Carbon sequestration in semi-arid rangelands: Comparison of Pinus ponderosa plantations and grazing exclusion in NW Patagonia. Journal of Arid Environments, 67(1), 142–156. https://doi.org/10.1016/j.jaridenv.2005.12.008

    Article  Google Scholar 

  • Obuchowski, N. A., & Bullen, J. A. (2018). Receiver operating characteristic (ROC) curves: review of methods with applications in diagnostic medicine. Physics in Medicine & Biology63(7), 07TR01.

  • Pavlova, D., & Karadjova, I. (2012). Chemical analysis of Teucrium species (Lamiaceae) growing on serpentine soils in Bulgaria. Journal of Plant Nutrition and Soil Science, 175(6), 891–899.

    Article  CAS  Google Scholar 

  • Peters, J., Baets, B. D., Verhoest, N. E., Samson, R., Degroeve, S., & Becker, P. D. H. (2007). Random forests as a tool for ecohydrological distribution modelling. Ecological Modelling, 207, 304–318.

    Article  Google Scholar 

  • Peterson, A. T., & Holt, R. D. (2003). Niche differentiation in Mexican birds: using point occurrences to detect ecological innovation. Ecology Letters, 6(8), 774–782.

  • Peterson, A. T., & Soberón, J. (2012). Species distribution modeling and ecological niche modeling: Getting the concepts right. Natureza & Conservação, 10(2), 102–107.

    Article  Google Scholar 

  • Pilania, P. K., & Panchal, N. S. (2014). 1. Ecological study at little Rann of Kutch (near wild ass sanctuary) of Gujarat in western India by Polk plan and news Panchal. Life Sciences Leaflets, 54, 1-to.

  • Pilania, P. K., & Panchal, N. S. (2016). Influence of soil properties on plant density and species richness of saline desert. Anales De Biología, 38, 201. https://doi.org/10.6018/analesbio.38.08

    Article  Google Scholar 

  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4), 231–259.

  • Phillips, S. J., Dudík, M., & Schapire, R. E. (2004). Proceedings of the Twenty-First International Conference on Machine Learning (ICML)'04.

  • Pradhan, B., & Lee, S. (2010). Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environment and Earth Science, 60, 1037–1054.

    Article  Google Scholar 

  • Poon, E. L., Margules, C. R., & Thompson, W. L. (2004). Searching for new populations of rare plant species in remote locations. Sampling rare or elusive species: concepts, designs, and techniques for estimating population parameters, 189–210.

  • Rew, J., Cho, Y., Moon, J., & Hwang, E. (2020). Habitat suitability estimation using a two-stage ensemble approach. Remote Sensing, 12(9), 1475.

  • Sahragard, H. P., Ajorlo, M., & Karami, P. (2018). Modeling habitat suitability of range plant species using random forest method in arid mountainous rangelands. Journal of Mountain Science, 15(10), 2159–2171. https://doi.org/10.1007/s11629-018-4898-1

    Article  Google Scholar 

  • Saleh, I., Abd-ElGawad, A., El Gendy, A. E. N., Abd El Aty, A., Mohamed, T., Kassem, H., & Hegazy, M. E. F. (2020). Phytotoxic and antimicrobial activities of Teucrium polium and Thymus decussatus essential oils extracted using hydrodistillation and microwave-assisted techniques. Plants, 9(6), 716.

    Article  CAS  Google Scholar 

  • Sanchez-Hernandez, C., Boyd, D. S., & Foody, G. M. (2007). Mapping specific habitats from remotely sensed imagery: Support vector machine and support vector data description based classification of coastal saltmarsh habitats. Ecological Informatics, 2(2), 83–88. https://doi.org/10.1016/j.ecoinf.2007.04.003

    Article  Google Scholar 

  • Sangoony, H., Vahabi, M., Tarkesh, M., & Soltani, S. (2016). Range shift of Bromus tomentellus Boiss. as a reaction to climate change in Central Zagros, Iran. Applied Ecology and Environmental Research, 14(4), 85–100. https://doi.org/10.15666/AEER/1404_085100

  • Seni, G., & Elder, J. F. (2010). Ensemble methods in data mining: Improving accuracy through combining predictions. Synthesis Lectures on Data Mining and Knowledge Discovery, 2(1), 1–126. https://doi.org/10.2200/S00240ED1V01Y200912DMK002

    Article  Google Scholar 

  • Shruthi, R. B., Kerle, N., Jetten, V., & Stein, A. (2014). Object-based gully system prediction from medium resolution imagery using Random Forests. Geomorphology, 216, 283–294.

    Article  Google Scholar 

  • Sousa, R., Yevseyeva, I., Da Costa, J. F. P., & Cardoso, J. S. (2013). Multicriteria models for learning ordinal data: A literature review. Artificial Intelligence, Evolutionary Computing and Metaheuristics, 109–138.

  • Solberg, A. H. S., Taxt, T., & Jain, A. K. (1996). A Markov random field model for classification of multisource satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 34(1), 100–113.

    Article  Google Scholar 

  • Svetnik, V., Liaw, A., Tong, C., Culberson, J. C., Sheridan, R. P., & Feuston, B. P. (2003). Random forest: A classification and regression tool for compound classification and QSAR modeling. Journal of Chemical Information and Computer Sciences, 43(6), 1947–1958. https://doi.org/10.1021/ci034160g

    Article  CAS  Google Scholar 

  • Takahashi, K., & Murayama, Y. (2014). Effects of topographic and edaphic conditions on alpine plant species distribution along a slope gradient on Mount Norikura, central Japan. Ecological Research, 29(5), 823–833.

    Article  Google Scholar 

  • Thapa, A., Wu, R., Hu, Y., Nie, Y., Singh, P. B., Khatiwada, J. R., & Wei, F. (2018). Predicting the potential distribution of the endangered red panda across its entire range using MaxEnt modeling. Ecology and Evolution, 8(21), 10542–10554. https://doi.org/10.1002/ece3.4526

    Article  Google Scholar 

  • Thuiller, W., Lafourcade, B., Engler, R., & Araújo, M. B. (2009). BIOMOD–a platform for ensemble forecasting of species distributions. Ecography32(3), 369–373. https://doi.org/10.1111/j.1600-0587.2008.05742.x

  • Van Nguyen, S., Nguyen, P. T. K., Araki, M., Perry, R. N., Tran, L. B., Chau, K. M., & Toyota, K. (2020). Effects of cropping systems and soil amendments on nematode community and its relationship with soil physicochemical properties in a paddy rice field in the Vietnamese Mekong Delta. Applied Soil Ecology, 156, 103683. https://doi.org/10.1016/j.apsoil.2020.103683

    Article  Google Scholar 

  • Walas, Ł, Sobierajska, K., Ok, T., Dönmez, A. A., Kanoğlu, S. S., Dagher-Kharrat, M. B., & Boratyński, A. (2019). Past, present, and future geographic range of an oro-Mediterranean Tertiary relict: The juniperus drupacea case study. Regional Environmental Change, 19(5), 1507–1520. https://doi.org/10.1007/s10113-019-01489-5

    Article  Google Scholar 

  • Wang, H. H., Wonkka, C. L., Treglia, M. L., Grant, W. E., Smeins, F. E., & Rogers, W. E. (2015). Species distribution modelling for conservation of an endangered endemic orchid. AoB Plants, 7.

  • Wang, Q., Li, W., Yan, S., Wu, Y., & Pei, Y. (2016). GIS based frequency ratio and index of entropy models to landslide susceptibility mapping (Daguan, China). Environ. Earth Science, 75.

  • Wang, Y. S., Xie, B. Y., Wan, F. H., Xiao, Q. M., & Dai, L. Y. (2007). The potential geographic distribution of Radopholus similis in China. Agricultural Sciences in China, 6(12), 1444–1449. https://doi.org/10.1016/S1671-2927(08)60006-1

    Article  Google Scholar 

  • Yalcin, A., Reis, S., Aydinoglu, A. C., & Yomralioglu, T. (2011). A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. CATENA, 85, 274–287.

    Article  Google Scholar 

  • Yilmaz, I. (2010). Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: Conditional probability, logistic regression, artificial neural networks, and support vector machine. Environmental Earth Sciences, 61(4), 821–836. https://doi.org/10.1007/s12665-009-0394-9

    Article  CAS  Google Scholar 

  • Yi, Y. J., Cheng, X., Yang, Z. F., & Zhang, S. H. (2016). Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan. China. Ecological Engineering, 92, 260–269. https://doi.org/10.1016/j.ecoleng.2016.04.010

    Article  Google Scholar 

  • Zhang, Z. H., Hu, G., & Ni, J. (2013). Effects of topographical and edaphic factors on the distribution of plant communities in two subtropical karst forests, southwestern China. Journal of Mountain Science, 10(1), 95–104.

    Article  CAS  Google Scholar 

  • Zhang, X., & Mahadevan, S. (2019). Ensemble machine learning models for aviation incident risk prediction. Decision Support Systems, 116, 48–63. https://doi.org/10.1016/j.dss.2018.10.009

    Article  Google Scholar 

  • Zhao, D., He, H. S., Wang, W. J., Wang, L., Du, H., Liu, K., & Zong, S. (2018). Predicting wetland distribution changes under climate change and human activities in a mid-and high-latitude region. Sustainability, 10(3), 863. https://doi.org/10.3390/su10030863

    Article  Google Scholar 

Download references

Funding

This research was supported by the College of Agriculture, Shiraz University (Grant No. 99GRC1M271143).

Author information

Authors and Affiliations

Authors

Contributions

SR, HRP, SP, and SR designed the experiments, ran models, analyzed the results, and wrote and reviewed the manuscript. All authors reviewed the final manuscript.

Corresponding author

Correspondence to Hamid Reza Pourghasemi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmanian, S., Pourghasemi, H.R., Pouyan, S. et al. Habitat potential modelling and mapping of Teucrium polium using machine learning techniques. Environ Monit Assess 193, 759 (2021). https://doi.org/10.1007/s10661-021-09551-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09551-8

Keywords

Navigation