Skip to main content
Log in

Impact of inhomogeneous fiber-reinforced layer with frictional interface on Rayleigh-type wave propagation

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The effect of frictional boundary on the propagation of Rayleigh-type wave in an initially stressed inhomogeneous fiber-reinforced layer overlying an initially stressed homogeneous semi-infinite medium has been analyzed by an approximate analytical method. A realistic model has been considered for sliding boundary friction at the interface. The frequency equation has been obtained in closed form. The substantial effects of various affecting parameters, viz. reinforcement, inhomogeneity, bonding parameter, spectral decay parameter, and horizontal initial stress on phase and damped velocity have been discussed graphically in detail. The remarkable observation has been obtained through the comparative study in the presence and the absence of reinforcement in the layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Spencer AJM (1972) Deformations of fibre-reinforced materials. Oxford University Press, London

    MATH  Google Scholar 

  2. Belfield AJ, Rogers TG, Spencer AJM (1983) Stress in elastic plates reinforced by fibres lying in concentric circles. J Mech Phys Solids 31(1):25–54

    Article  MATH  Google Scholar 

  3. Verma PDS (1986) Magnetoelastic shear waves in self-reinforced bodies. Int J Eng Sci 24(7):1067–1073

    Article  MATH  Google Scholar 

  4. Chattopadhyay A, Venkateswarlu RL, Saha S (2002) Reflection of quasi-P and quasi-SV waves at the free and rigid boundaries of a fibre-reinforced medium. Sãdhanã 27(6):613–630

    MATH  Google Scholar 

  5. Kundu S, Pandit DK, Gupta S, Manna S (2016) Love wave propagation in a fiber-reinforced medium sandwiched between an isotropic layer and gravitating half-space. J Eng Math 100(1):109–119

    Article  MathSciNet  MATH  Google Scholar 

  6. Singh AK, Lakshman A, Chattopadhyay A (2016) The plane waves at the edge of a uniformly pre-stressed fiber-reinforced plate. J Vib Control 22(10):2530–2541

    Article  MathSciNet  Google Scholar 

  7. Kaur T, Sharma SK, Singh AK (2016) Effect of reinforcement, gravity and liquid loading on Rayleigh-type wave propagation. Meccanica 51(10):2449–2458

    Article  MathSciNet  MATH  Google Scholar 

  8. Bullen KE (1940) The problem of the Earth’s density variation. Bull Seismol Soc Am 30(3):235–250

    Google Scholar 

  9. Biot MA (1965) Mechanics of incremental deformations. Wiley, New York

    Book  Google Scholar 

  10. Chatterjee M, Dhua S, Chattopadhyay A, Sahu SA (2016) Seismic waves in heterogeneous crust-mantle layers under initial stresses. J Earthq Eng 20(1):39–61

    Article  Google Scholar 

  11. Sezawa K, Kanai K (1940) A fault surface or a block absorbs seismic wave energy. Bull Earthq Res Inst Tokyo Univ 18:465–482

    MATH  Google Scholar 

  12. Kanai K (1961) A new problem concerning surface waves. Bull Earthq Res Inst Tokyo Univ 39:359–366

    MathSciNet  Google Scholar 

  13. Iwan WD (1973) A generalization of the concept of equivalent linearization. Int J Nonlinear Mech 8(3):279–287

    Article  MathSciNet  MATH  Google Scholar 

  14. Miller RK (1979) An estimate of the properties of Love-type surface waves in a frictionally bonded layer. Bull Seismol Soc Am 69(2):305–317

    Google Scholar 

  15. Miller RK (1977) An approximate method of analysis of the transmission of elastic waves through a frictional boundary. J Appl Mech 44(4):652–656

    Article  MATH  Google Scholar 

  16. Murty GS (1975) A theoretical model for the attenuation and dispersion of Stoneley waves at the loosely bonded interface of elastic half spaces. Phys Earth Planet Inter 11(1):65–79

    Article  MathSciNet  Google Scholar 

  17. Singh AK, Parween Z, Das A, Chattopadhyay A (2017) Influence of loosely-bonded sandwiched initially stressed visco-elastic layer on torsional wave propagation. J Mech 33(3):351–368

    Article  Google Scholar 

  18. Mistri KC, Singh AK, Yadav RP, Chattopadhyay A (2017) Stresses due to moving load on the surface of an irregular magneto-elastic monoclinic half-space under hydrostatic initial stress. Mech Adv Mater Struct 24(13):1094–1108

    Article  Google Scholar 

  19. Xia J, Miller RD, Park CB (1999) Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves. Geophysics 64(3):691–700

    Article  Google Scholar 

  20. Mallick PK (2007) Fibre-reinforced composites: materials, manufacturing, and design. CRC Press, Boca Raton

    Book  Google Scholar 

  21. Loeb J (1961) Attenuation des ondes sismiques dans les solides. Geophys Prospect 9(3):370–381

    Article  Google Scholar 

  22. Markham MF (1970) Measurement of the elastic constants of fibre composites by ultrasonics. Composites 1(3):145–149

    Article  Google Scholar 

  23. Gubbins D (1990) Seismology and plate tectonics. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

The authors convey their sincere thanks to the Indian Institute of Technology (ISM), Dhanbad for providing JRF to Ms. Akanksha Srivastava and also facilitating us with its best facility for research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akanksha Srivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$\begin{aligned} A_{11}&=-n^{2} \left( {\frac{Q}{\mu _{\mathrm{T}1}^{(0)}}-\frac{P_{1}}{2\mu _{\mathrm{T}1}^{(0)}}} \right) +\mathrm{i}n \left( {\frac{-2\mathrm{i}N}{\mu _{\mathrm{T}1}^{(0)}}+\frac{\gamma '}{\varepsilon } \frac{Q}{\mu _{\mathrm{T}1}^{(0)}}- \frac{\gamma '}{\varepsilon } \frac{P_{1}}{2\mu _{\mathrm{T}1}^{(0)}}} \right) + \left( {\frac{-L}{\mu _{\mathrm{T}1}^{(0)}}-\frac{\mathrm{i} \gamma '}{\varepsilon } \frac{N}{\mu _{\mathrm{T}1}^{(0)}}+\frac{\rho _{1}c^{2} \eta {2}}{\mu _{\mathrm{T}1}^{(0)}}} \right) ,\\ A_{12}&=\frac{-J}{\mu _{\mathrm{T}1}^{(0)}} n^{2}+ \mathrm{i}n\left( \frac{\gamma '}{\varepsilon } \frac{J}{\mu _{\mathrm{T}1}^{(0)}}-\frac{\mathrm{i}P_{1}}{2\mu _{\mathrm{T}1}^{(0)}}-\frac{\mathrm{i}M}{\mu _{\mathrm{T}1}^{(0)}}-\frac{\mathrm{i}Q}{\mu _{\mathrm{T}1}^{(0)}} \right) + \left( {\frac{-N}{\mu _{\mathrm{T}1}^{(0)}}-\frac{\mathrm{i}Q}{\mu _{\mathrm{T}1}^{(0)}} \frac{\gamma '}{\varepsilon } +\mathrm{i}\frac{\gamma '}{\varepsilon }\frac{P_{1}}{2\mu _{\mathrm{T}1}^{(0)}}} \right) , \\ A_{21}&=\frac{-J}{\mu _{\mathrm{T}1}^{(0)}} n^{2}+ \mathrm{i}n\left( \frac{\gamma '}{\varepsilon } \frac{J}{\mu _{\mathrm{T}1}^{(0)}}+\frac{\mathrm{i}P_{1}}{2\mu _{\mathrm{T}1}^{(0)}}-\frac{\mathrm{i}M}{\mu _{\mathrm{T}1}^{(0)}}-\frac{\mathrm{i}Q}{\mu _{\mathrm{T}1}^{(0)}} \right) + \left( {\frac{-N}{\mu _{\mathrm{T}1}^{(0)}}-\frac{\mathrm{i}M}{\mu _{\mathrm{T}1}^{(0)}} \frac{\gamma '}{\varepsilon } } \right) , \\ A_{22}&= \frac{R}{\mu _{\mathrm{T}1}^{(0)}} n^{2}+\mathrm{i}n \left( {\frac{\gamma '}{\varepsilon } \frac{R}{\mu _{\mathrm{T}1}^{(0)}} -\frac{-2\mathrm{i}J}{\mu _{\mathrm{T}1}^{(0)}} } \right) + \left( {\frac{-Q}{\mu _{\mathrm{T}1}^{(0)}} - \frac{\mathrm{i}J}{\mu _{\mathrm{T}1}^{(0)}}\frac{\gamma '}{\varepsilon }-\frac{P_{1}}{2\mu _{\mathrm{T}1}^{(0)}}+\frac{\rho _{1}c^{2} \eta {2}}{\mu _{\mathrm{T}1}^{(0)}}} \right) ,\quad \eta =(1+\mathrm{i}\kappa ),\quad \beta _{1}^{2}=\frac{{\mu _{\mathrm{T}1}^{(0)}}}{\rho _{1}^{(0)}},\\ b_{1}&= \left[ { - {{\left( {\frac{J}{{\mu _{\mathrm{T}1}^{(0)}}}} \right) }^2} + \frac{R}{{\mu _{\mathrm{T}1}^{(0)}}}\left( {\frac{Q}{{\mu _{\mathrm{T}1}^{(0)}}} - \frac{{P_0^{(1)}}}{{2\mu _{\mathrm{T}1}^{(0)}}}} \right) } \right] ,\quad {b_2} = 2\frac{J}{{\mu _{\mathrm{T}1}^{(0)}}}\left( {\frac{J}{{\mu _{\mathrm{T}1}^{(0)}}}\left( {\frac{{\gamma '}}{\varepsilon }} \right) - \mathrm{i}\frac{Q}{{\mu _{\mathrm{T}1}^{(0)}}} - \mathrm{i}\frac{M}{{\mu _{\mathrm{T}1}^{(0)}}}} \right) \\&\quad - \left( {\frac{Q}{{\mu _{\mathrm{T}1}^{(0)}}} - \frac{{P_0^{(1)}}}{{2\mu _{\mathrm{T}1}^{(0)}}}} \right) \left( {\left( {\frac{{\gamma '}}{\varepsilon }} \right) \frac{R}{{\mu _{\mathrm{T}1}^{(0)}}} - 2\mathrm{i}\frac{J}{{\mu _{\mathrm{T}1}^{(0)}}}} \right) - \left( {\frac{R}{{\mu _{\mathrm{T}1}^{(0)}}}} \right) \left[ { - 2\mathrm{i}\left( {\frac{N}{{\mu _{\mathrm{T}1}^{(0)}}}} \right) + \left( {\frac{{\gamma '}}{\varepsilon }} \right) \left( {\frac{Q}{{\mu _{\mathrm{T}1}^{(0)}}}} \right) - \left( {\frac{{\gamma '}}{\varepsilon }} \right) \frac{{P_0^{(1)}}}{{2\mu _{\mathrm{T}1}^{(0)}}}} \right] ,\\ {b_3}&= \frac{J}{{\mu _{\mathrm{T}1}^{(0)}}}\left[ { - \frac{N}{{\mu _{\mathrm{T}1}^{(0)}}} - \mathrm{i}\left( {\frac{{\gamma '}}{\varepsilon }} \right) \left( {\frac{M}{{\mu _{\mathrm{T}1}^{(0)}}}} \right) } \right] + \frac{J}{{\mu _{\mathrm{T}1}^{(0)}}}\left[ { - \frac{N}{{\mu _{\mathrm{T}1}^{(0)}}} - \mathrm{i}\left( {\frac{{\gamma '}}{\varepsilon }} \right) \left( {\frac{Q}{{\mu _{\mathrm{T}1}^{(0)}}}} \right) + \mathrm{i}\left( {\frac{{\gamma '}}{\varepsilon }} \right) \left( {\frac{{P_0^{(1)}}}{{2\mu _{\mathrm{T}1}^{(0)}}}} \right) } \right] \\&\quad + \left( {\frac{R}{{\mu _{\mathrm{T}1}^{(0)}}}} \right) \left[ { - \frac{L}{{\mu _{\mathrm{T}1}^{(0)}}} - \mathrm{i}\left( {\frac{{\gamma '}}{\varepsilon }} \right) \frac{N}{{\mu _{\mathrm{T}1}^{(0)}}} + {{\left( {\frac{c}{{{\beta _1}}}} \right) }^2}{\eta ^2}} \right] - \left[ {\left( {\frac{R}{{\mu _{\mathrm{T}1}^{(0)}}}} \right) \left( {\frac{{\gamma '}}{\varepsilon }} \right) - \frac{{2J}}{{\mu _{\mathrm{T}1}^{(0)}}}\mathrm{i}} \right] \\&\quad \times \left[ { - 2\mathrm{i}\frac{N}{{\mu _{\mathrm{T}1}^{(0)}}} + \left( {\frac{{\gamma '}}{\varepsilon }} \right) \left( {\frac{Q}{{\mu _{\mathrm{T}1}^{(0)}}}} \right) - \left( {\frac{{\gamma '}}{\varepsilon }} \right) \left( {\frac{{P_0^{(1)}}}{{2\mu _{\mathrm{T}1}^{(0)}}}} \right) } \right] \\&\quad - \left[ { - \left( {\frac{Q}{{\mu _{\mathrm{T}1}^{(0)}}}} \right) - \mathrm{i}\frac{J}{{\mu _{\mathrm{T}1}^{(0)}}}\left( {\frac{{\gamma '}}{\varepsilon }} \right) - \left( {\frac{{P_0^{(1)}}}{{2\mu _{\mathrm{T}1}^{(0)}}}} \right) + {{\left( {\frac{c}{{{\beta _1}}}} \right) }^2}{\eta ^2}} \right] \left[ {\frac{Q}{{\mu _{\mathrm{T}1}^{(0)}}} - \frac{{P_0^{(1)}}}{{2\mu _{\mathrm{T}1}^{(0)}}}} \right] \\&\quad + \left[ {\frac{J}{{\mu _{\mathrm{T}1}^{(0)}}}\left( {\frac{{\gamma '}}{\varepsilon }} \right) - \frac{Q}{{\mu _{\mathrm{T}1}^{(0)}}}\mathrm{i} - \frac{M}{{\mu _{\mathrm{T}1}^{(0)}}}\mathrm{i} - \frac{{P_0^{(1)}}}{{2\mu _{\mathrm{T}1}^{(0)}}}\mathrm{i}} \right] \left[ {\frac{J}{{\mu _{\mathrm{T}1}^{(0)}}}\left( {\frac{{\gamma '}}{\varepsilon }} \right) - \frac{Q}{{\mu _{\mathrm{T}1}^{(0)}}}\mathrm{i} - \frac{M}{{\mu _{\mathrm{T}1}^{(0)}}}\mathrm{i} + \frac{{P_0^{(1)}}}{{2\mu _{\mathrm{T}1}^{(0)}}}\mathrm{i}} \right] ,\\ {b_4}&= \left[ {\frac{J}{{\mu _{\mathrm{T}1}^{(0)}}}\left( {\frac{{\gamma '}}{\varepsilon }} \right) - i\frac{Q}{{\mu _{\mathrm{T}1}^{(0)}}} - \mathrm{i}\frac{M}{{\mu _{\mathrm{T}1}^{(0)}}} - \frac{{P_0^{(1)}}}{{2\mu _{\mathrm{T}1}^{(0)}}}\mathrm{i}} \right] \left[ {\frac{N}{{\mu _{\mathrm{T}1}^{(0)}}} + \mathrm{i}\left( {\frac{{\gamma '}}{\varepsilon }} \right) \frac{M}{{\mu _{\mathrm{T}1}^{(0)}}}} \right] \\&\quad - \left[ { - \frac{N}{{\mu _{\mathrm{T}1}^{(0)}}} - \mathrm{i}\frac{Q}{{\mu _{\mathrm{T}1}^{(0)}}}\left( {\frac{{\gamma '}}{\varepsilon }} \right) + \mathrm{i}\left( {\frac{{\gamma '}}{\varepsilon }} \right) \left( {\frac{{P_0^{(1)}}}{{2\mu _{\mathrm{T}1}^{(0)}}}} \right) } \right] \left[ {\frac{J}{{\mu _{\mathrm{T}1}^{(0)}}}\left( {\frac{{\gamma '}}{\varepsilon }} \right) - \mathrm{i}\frac{Q}{{\mu _{\mathrm{T}1}^{(0)}}} - \mathrm{i}\frac{M}{{\mu _{\mathrm{T}1}^{(0)}}} + \frac{{P_0^{(1)}}}{{2\mu _{\mathrm{T}1}^{(0)}}}\mathrm{i}} \right] \\&\quad + \left[ {\left( {\frac{{\gamma '}}{\varepsilon }} \right) \frac{R}{{\mu _{\mathrm{T}1}^{(0)}}} - 2\frac{J}{{\mu _{\mathrm{T}1}^{(0)}}}\mathrm{i}} \right] \left[ { - \frac{L}{{\mu _{\mathrm{T}1}^{(0)}}} - \mathrm{i}\left( {\frac{{\gamma '}}{\varepsilon }} \right) \frac{N}{{\mu _{\mathrm{T}1}^{(0)}}} + {{\left( {\frac{c}{{{\beta _1}}}} \right) }^2}{\eta ^2}} \right] \\&\quad + \left[ { - 2\mathrm{i}\left( {\frac{N}{{\mu _{\mathrm{T}1}^{(0)}}}} \right) + \left( {\frac{{\gamma '}}{\varepsilon }} \right) \left( {\frac{Q}{{\mu _{\mathrm{T}1}^{(0)}}}} \right) - \left( {\frac{{\gamma '}}{\varepsilon }} \right) \frac{{P_0^{(1)}}}{{2\mu _{\mathrm{T}1}^{(0)}}}} \right] \left[ { - \frac{Q}{{\mu _{\mathrm{T}1}^{(0)}}} - \mathrm{i}\frac{J}{{\mu _{\mathrm{T}1}^{(0)}}}\left( {\frac{{\gamma '}}{\varepsilon }} \right) - \frac{{P_0^{(1)}}}{{2\mu _{\mathrm{T}1}^{(0)}}} + {{\left( {\frac{c}{{{\beta _1}}}} \right) }^2}{\eta ^2}} \right] ,\\ {b_5}&= \left[ { - \frac{L}{{\mu _{\mathrm{T}1}^{(0)}}} - \mathrm{i}\left( {\frac{{\gamma '}}{\varepsilon }} \right) \left( {\frac{N}{{\mu _{\mathrm{T}1}^{(0)}}}} \right) + {{\left( {\frac{c}{{{\beta _1}}}} \right) }^2}{\eta ^2}} \right] \left[ { - \frac{Q}{{\mu _{\mathrm{T}1}^{(0)}}} - \mathrm{i}\frac{J}{{\mu _{\mathrm{T}1}^{(0)}}}\left( {\frac{{\gamma '}}{\varepsilon }} \right) - \frac{{P_0^{(1)}}}{{2\mu _{\mathrm{T}1}^{(0)}}} + {{\left( {\frac{c}{{{\beta _1}}}} \right) }^2}{\eta ^2}} \right] \\&\quad + \left[ {\frac{N}{{\mu _{\mathrm{T}1}^{(0)}}} + \mathrm{i}\left( {\frac{{\gamma '}}{\varepsilon }} \right) \left( {\frac{M}{{\mu _{\mathrm{T}1}^{(0)}}}} \right) } \right] \left[ { - \frac{N}{{\mu _{\mathrm{T}1}^{(0)}}} - \mathrm{i}\left( {\frac{{\gamma '}}{\varepsilon }} \right) \frac{Q}{{\mu _{\mathrm{T}1}^{(0)}}} + \mathrm{i}\left( {\frac{{\gamma '}}{\varepsilon }} \right) \left( {\frac{{P_0^{(1)}}}{{2\mu _{\mathrm{T}1}^{(0)}}}} \right) } \right] . \end{aligned}$$

Appendix B

$$\begin{aligned} d_{1}= & {} \left( {1 - \frac{{{P_2}}}{{2{\mu _2}}}} \right) \left( {\frac{{{\lambda _2}}}{{{\mu _2}}} + 2} \right) ,\nonumber \\ {d_2}= & {} \left( {\frac{{{\lambda _2}}}{{{\mu _2}}} + 1 + \frac{{{P_2}}}{{2{\mu _2}}}} \right) \left( {\frac{{{\lambda _2}}}{{{\mu _2}}} + 1 - \frac{{{P_2}}}{{2{\mu _2}}}} \right) + \left( {1 - \frac{{{P_2}}}{{2{\mu _2}}}} \right) \left( {\frac{{{v^2}{\eta ^2}}}{{{\beta ^2}}} - \left( {1 + \frac{{{P_2}}}{{2{\mu _2}}}} \right) } \right) \nonumber \\&+ \left( {\frac{{{\lambda _2}}}{{{\mu _2}}} + 2} \right) \left( {\frac{{{v^2}{\eta ^2}}}{{{\beta ^2}}} - \left( {\frac{{{\lambda _2}}}{{{\mu _2}}} + 2} \right) } \right) ,\nonumber \\ {d_3}= & {} \left( {\frac{{{v^2}{\eta ^2}}}{{{\beta ^2}}} - \left( {\frac{{{\lambda _2}}}{{{\mu _2}}} + 2} \right) } \right) \left( {\frac{{{v^2}{\eta ^2}}}{{{\beta ^2}}} - \left( {1 + \frac{{{P_2}}}{{2{\mu _2}}}} \right) } \right) . \end{aligned}$$

Appendix C

$$\begin{aligned}&{a_{11}} = \left[ {\frac{{ - N}}{{\mu _{\mathrm{T}1}^{(0)}}} + \frac{Q}{{\mu _{\mathrm{T}1}^{(0)}}}{{n_1}} - \frac{Q}{{\mu _{\mathrm{T}1}^{(0)}}}{\delta _1} + {{n_1}}{\delta _1}\frac{J}{{\mu _{\mathrm{T}1}^{(0)}}}} \right] {\mathrm{e}^{ - \mathrm{i}k{{n_1}}H}},\nonumber \\&{a_{12}} = \left[ {\frac{{ - N}}{{\mu _{\mathrm{T}1}^{(0)}}} + \frac{Q}{{\mu _{\mathrm{T}1}^{(0)}}}{{n_2}} - \frac{Q}{{\mu _{\mathrm{T}1}^{(0)}}}{\delta _2} + {{n_2}}{\delta _2}\frac{J}{{\mu _{\mathrm{T}1}^{(0)}}}} \right] {\mathrm{e}^{ - \mathrm{i}k{{n_2}}H}},\\&{a_{13}} = \left[ {\frac{{ - N}}{{\mu _{\mathrm{T}1}^{(0)}}} - \frac{Q}{{\mu _{\mathrm{T}1}^{(0)}}}{{n_1}} - \frac{Q}{{\mu _{\mathrm{T}1}^{(0)}}}{\chi _1} - {{n_1}}{\chi _1}\frac{J}{{\mu _{\mathrm{T}1}^{(0)}}}} \right] {\mathrm{e}^{\mathrm{i}k{{n_1}}H}},\nonumber \\&{a_{14}} = \left[ {\frac{{ - N}}{{\mu _{\mathrm{T}1}^{(0)}}} - \frac{Q}{{\mu _{\mathrm{T}1}^{(0)}}}{{n_2}} - \frac{Q}{{\mu _{\mathrm{T}1}^{(0)}}}{\chi _2} - {{n_2}}{\chi _2}\frac{J}{{\mu _{\mathrm{T}1}^{(0)}}}} \right] {\mathrm{e}^{\mathrm{i}k{{n_2}}H}},\\&{a_{15}} = 0, \quad {a_{16}} = 0,\quad {a_{21}} = \left[ {\frac{{ - M}}{{\mu _{\mathrm{T}1}^{(0)}}} + \frac{J}{{\mu _{\mathrm{T}1}^{(0)}}}{{n_1}} - \frac{J}{{\mu _{\mathrm{T}1}^{(0)}}}{\delta _1} + {{n_1}}{\delta _1}\frac{R}{{\mu _{\mathrm{T}1}^{(0)}}}} \right] {\mathrm{e}^{ - \mathrm{i}k{{n_1}}H}},\\&{a_{22}} = \left[ {\frac{{ - M}}{{\mu _{\mathrm{T}1}^{(0)}}} + \frac{J}{{\mu _{\mathrm{T}1}^{(0)}}}{{n_2}} - \frac{J}{{\mu _{\mathrm{T}1}^{(0)}}}{\delta _2} + {{n_2}}{\delta _2}\frac{R}{{\mu _{\mathrm{T}1}^{(0)}}}} \right] {\mathrm{e}^{ - \mathrm{i}k{{n_2}}H}},\nonumber \\&{a_{23}} = \left[ {\frac{{ - M}}{{\mu _{\mathrm{T}1}^{(0)}}} - \frac{J}{{\mu _{\mathrm{T}1}^{(0)}}}{{n_1}} - \frac{J}{{\mu _{\mathrm{T}1}^{(0)}}}{\chi _1} - {{n_1}}{\chi _1}\frac{R}{{\mu _{\mathrm{T}1}^{(0)}}}} \right] {\mathrm{e}^{\mathrm{i}k{{n_1}}H}},\\&{a_{24}} = \left[ {\frac{{ - M}}{{\mu _{\mathrm{T}1}^{(0)}}} - \frac{J}{{\mu _{\mathrm{T}1}^{(0)}}}{{n_2}} - \frac{J}{{\mu _{\mathrm{T}1}^{(0)}}}{\chi _2} - {{n_2}}{\chi _2}\frac{R}{{\mu _{\mathrm{T}1}^{(0)}}}} \right] {\mathrm{e}^{\mathrm{i}k{{n_2}}H}},\quad {a_{25}} = 0,\quad {a_{26}} = 0,\\&{a_{31}} = \left[ {\frac{{ - N}}{{\mu _{\mathrm{T}1}^{(0)}}} + \frac{Q}{{\mu _{\mathrm{T}1}^{(0)}}}{{n_1}} - \frac{Q}{{\mu _{\mathrm{T}1}^{(0)}}}{\delta _1} + {{n_1}}{\delta _1}\frac{J}{{\mu _{\mathrm{T}1}^{(0)}}} + \phi } \right] ,\\&{a_{32}} = \left[ {\frac{{ - N}}{{\mu _{\mathrm{T}1}^{(0)}}} + \frac{Q}{{\mu _{\mathrm{T}1}^{(0)}}}{{n_2}} - \frac{Q}{{\mu _{\mathrm{T}1}^{(0)}}}{\delta _2} + {{n_2}}{\delta _2}\frac{J}{{\mu _{\mathrm{T}1}^{(0)}}} + \phi } \right] ,\quad {a_{35}} = - \phi ,\\&{a_{33}} = \left[ {\frac{{ - N}}{{\mu _{\mathrm{T}1}^{(0)}}} - \frac{Q}{{\mu _{\mathrm{T}1}^{(0)}}}{{n_1}} - \frac{Q}{{\mu _{\mathrm{T}1}^{(0)}}}{\chi _1} - {{n_1}}{\chi _1}\frac{J}{{\mu _{\mathrm{T}1}^{(0)}}} + \phi } \right] ,\\&{a_{34}} = \left[ {\frac{{ - N}}{{\mu _{\mathrm{T}1}^{(0)}}} - \frac{Q}{{\mu _{\mathrm{T}1}^{(0)}}}{{n_2}} - \frac{Q}{{\mu _{\mathrm{T}1}^{(0)}}}{\chi _2} - {{n_2}}{\chi _2}\frac{J}{{\mu _{\mathrm{T}1}^{(0)}}} + \phi } \right] ,\quad {a_{36}} = - \phi , \end{aligned}$$
$$\begin{aligned}&{a_{41}} = \left[ {\frac{{ - M}}{{\mu _{\mathrm{T}1}^{(0)}}} + \frac{J}{{\mu _{\mathrm{T}1}^{(0)}}}{{n_1}} - \frac{J}{{\mu _{\mathrm{T}1}^{(0)}}}{\delta _1} + {{n_1}}{\delta _1}\frac{R}{{\mu _{\mathrm{T}1}^{(0)}}} + \psi {\delta _1}} \right] ,\nonumber \\&{a_{42}} = \left[ {\frac{{ - M}}{{\mu _{\mathrm{T}1}^{(0)}}} + \frac{J}{{\mu _{\mathrm{T}1}^{(0)}}}{{n_2}} - \frac{J}{{\mu _{\mathrm{T}1}^{(0)}}}{\delta _2} + {{n_2}}{\delta _2}\frac{R}{{\mu _{\mathrm{T}1}^{(0)}}} + \psi {\delta _2}} \right] ,\\&{a_{43}} = \left[ {\frac{{ - M}}{{\mu _{\mathrm{T}1}^{(0)}}} - \frac{J}{{\mu _{\mathrm{T}1}^{(0)}}}{{n_1}} - \frac{J}{{\mu _{\mathrm{T}1}^{(0)}}}{\chi _1} - {{n_1}}{\chi _1}\frac{R}{{\mu _{\mathrm{T}1}^{(0)}}} + \psi {\chi _1}} \right] ,\\&{a_{44}} = \left[ {\frac{{ - M}}{{\mu _{\mathrm{T}1}^{(0)}}} - \frac{J}{{\mu _{\mathrm{T}1}^{(0)}}}{{n_2}} - \frac{J}{{\mu _{\mathrm{T}1}^{(0)}}}{\chi _2} - {{n_2}}{\chi _2}\frac{R}{{\mu _{\mathrm{T}1}^{(0)}}} + \psi {\chi _2}} \right] ,\\&{a_{45}} = - \psi {\ell _3},\quad {a_{46}} = - \psi {\ell _4},\quad {a_{51}} = \frac{\phi }{\mu },\quad {a_{52}} = \frac{\phi }{\mu },\quad {a_{53}} = \frac{\phi }{\mu },\quad {a_{54}} = \frac{\phi }{\mu },\quad \psi = v\left( {( {1 + \mathrm{i}\kappa })\overline{{M_2}} - i\overline{{L_2}} } \right) ,\\&{a_{55}} = - \left( {{{m_1}} + {\ell _3} + \frac{\phi }{\mu }} \right) ,\quad {a_{56}} = - \left( {{{m_2}} + {\ell _4} + \frac{\phi }{\mu }} \right) ,\quad {a_{61}} = \frac{\psi }{\mu },\quad {a_{62}} = \frac{\psi }{\mu },\quad {a_{63}} = \frac{\psi }{\mu },\quad {a_{64}} = \frac{\psi }{\mu },\\&{a_{65}} = - \left( {{{m_1}}{\ell _3}\left( {\frac{{{\lambda _2}}}{{{\mu _2}}} + 2} \right) + \frac{\psi }{\mu }{\ell _3} + \frac{{{\lambda _2}}}{{{\mu _2}}}} \right) ,\quad {a_{66}} = - \left( {{{m_2}}{\ell _4}\left( {\frac{{{\lambda _2}}}{{{\mu _2}}} + 2} \right) + \frac{\psi }{\mu }{\ell _4} + \frac{{{\lambda _2}}}{{{\mu _2}}}} \right) ,\\&\phi = v\left( {( {1 +\mathrm{i}\kappa } )\overline{{M_1}} - \mathrm{i}\overline{{L_1}} } \right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A., Chattopadhyay, A. & Singh, A.K. Impact of inhomogeneous fiber-reinforced layer with frictional interface on Rayleigh-type wave propagation. J Eng Math 114, 159–176 (2019). https://doi.org/10.1007/s10665-019-09987-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-019-09987-5

Keywords

Navigation