Skip to main content
Log in

Stable and accurate numerical methods for generalized Kirchhoff–Love plates

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Kirchhoff–Love plate theory is widely used in structural engineering. In this paper, efficient and accurate numerical algorithms are developed to solve a generalized Kirchhoff–Love plate model subject to three common physical boundary conditions: (i) clamped; (ii) simply supported; and (iii) free. The generalization stems from the inclusion of additional physics to the classical Kirchhoff–Love model that accounts for bending only. We solve the model equation by discretizing the spatial derivatives using second-order finite-difference schemes, and then advancing the semi-discrete problem in time with either an explicit predictor–corrector or an implicit Newmark-Beta time-stepping algorithm. Stability analysis is conducted for the schemes, and the results are used to determine stable time steps in practice. A series of carefully chosen test problems are solved to demonstrate the properties and applications of our numerical approaches. The numerical results confirm the stability and 2nd-order accuracy of the algorithms and are also comparable with experiments for similar thin plates. As an application, we illustrate a strategy to identify the natural frequencies of a plate using our numerical methods in conjunction with a fast Fourier transformation power spectrum analysis of the computed data. Then we take advantage of one of the computed natural frequencies to simulate the interesting physical phenomena known as resonance and beat for a generalized Kirchhoff–Love plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Niiranen J, Kiendl J, Niemi AH, Reali A (2017) Isogeometric analysis for sixth-order boundary value problems of gradient-elastic Kirchhoff plates. Comput Method Appl Mech Eng 316:328–348

    Article  MathSciNet  MATH  Google Scholar 

  2. Niiranen J, Niemi AH (2017) Variational formulations and general boundary conditions for sixth-order boundary value problems of gradient-elastic Kirchhoff plates. Eur J Mech Solids 61:164–179

    Article  MathSciNet  MATH  Google Scholar 

  3. Flügge W (2013) Viscoelasticity. Springer, Berlin

    MATH  Google Scholar 

  4. Vlasov VZ (1966) Beams, plates and shells on elastic foundation. Israel Program for Scientific Translation

  5. Koiter WT, Simmonds JG (1973) Foundations of shell theory. In: Becker E, Mikhailov GK (eds) Theoretical and applied mechanics. Springer, Berlin, pp 150–176

    Chapter  Google Scholar 

  6. Leissa A (1969) Vibration of plates. Tech Rep NASA-SP-160, NASA

  7. Love AEH (1888) The small free vibrations and deformation of a thin elastic shell. Philos Trans R Soc A 179:491–546

    MATH  Google Scholar 

  8. Reissner E (1976) On the theory of transverse bending of elastic plates. Int J Solids Struct 12:545–554

    Article  MathSciNet  MATH  Google Scholar 

  9. Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells, 2nd edn. McGraw-Hill, New York

    MATH  Google Scholar 

  10. Mindlin RD (1951) Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. J Appl Mech 18(1):31–38

    Article  MATH  Google Scholar 

  11. Koiter WT (1960) A consistent first approximation in the general theory of thin elastic shells. In: Proceedings of the IUTAM symposium on the theory of thin elastic shells, pp. 12–33. North–Holland, Amsterdam

  12. Canic S, Tambaca J, Guidoboni G, Mikelic A, Hartley CJ, Rosenstrauch D (2006) Modeling viscoelastic behavior of arterial walls and their interaction with pulsatile blood flow. SIAM J Appl Math 67:164–193

    Article  MathSciNet  MATH  Google Scholar 

  13. Arnold DN, Madureira AL, Zhang S (2002) On the range of applicability of the Reissner–Mindlin and Kirchhoff–Love plate bending models. J Elast 67:171–185

    Article  MathSciNet  MATH  Google Scholar 

  14. Banks JW, Henshaw WD, Schwendeman DW (2014) An analysis of a new stable partitioned algorithm for FSI problems. Part II: incompressible flow and structural shells. J Comput Phys 268:399–416

    Article  MathSciNet  MATH  Google Scholar 

  15. Li L, Henshaw WD, Banks JW, Schwendeman DW, Main GA (2016) A stable partitioned FSI algorithm for incompressible flow and deforming beams. J Comput Phys 312:272–306

    Article  MathSciNet  MATH  Google Scholar 

  16. Szilard R (2004) Theories and applications of plate analysis: classical numerical and engineering methods. Wiley, Chichester

    Book  Google Scholar 

  17. Bilbao S (2008) A family of conservative finite difference schemes for the dynamical von Karman plate equations. Numer Methods Partial Differ Equ 24(1):193–216

    Article  MathSciNet  MATH  Google Scholar 

  18. Ji H, Li L (2019) Numerical methods for thermally stressed shallow shell equations. J Comput Appl Math 362:626–652

    Article  MathSciNet  MATH  Google Scholar 

  19. Batoz JL (1982) An explicit formulation for an efficient triangular plate-bending element. Int J Numer Meth Eng 18:1077–1089

    Article  MATH  Google Scholar 

  20. Bécache E, Derveaux G, Joly P (2005) An efficient numerical method for the resolution of the Kirchhoff–Love dynamic plate equation. Numer Methods Partial Differ Equ 21(2):323–348

    Article  MathSciNet  MATH  Google Scholar 

  21. Bischoff M, Bletzinger KU, Wall W, Ramm E (2004) Models and finite elements for thin-walled structures 2

  22. da Veiga LB, Niiranen J, Stenberg R (2007) A family of \({C}^0\) finite elements for Kirchhoff plates I: error analysis. SIAM J Numer Anal 45:2047–2071

    MathSciNet  MATH  Google Scholar 

  23. da Veiga LB, Niiranen J, Stenberg R (2008) A family of \({C}^0\) finite elements for Kirchhoff plates II: numerical results. Comput Method Appl Mech Eng 197(21):1850–1864

    MATH  Google Scholar 

  24. Huang J, Huang X, Xu Y (2011) Convergence of an adaptive mixed finite element method for Kirchhoff plate bending problems. SIAM J Numer Anal 49:574–607

    Article  MathSciNet  MATH  Google Scholar 

  25. Ibrahimbegović A (1993) Quadrilateral finite elements for analysis of thick and thin plates. Comput Method Appl Mech Eng 110:195–209

    Article  MATH  Google Scholar 

  26. Oñate E, Zárate F (2000) Rotation-free triangular plate and shell elements. Int J Numer Meth Eng 47:557–603

    Article  MathSciNet  MATH  Google Scholar 

  27. Perotti L, Bompadre A, Ortiz M (2013) Automatically inf-sup compliant diamond-mixed finite elements for Kirchhoff plates. Int J Numer Meth Eng 96:405–424

    Article  MathSciNet  MATH  Google Scholar 

  28. Frangi A, Guiggiani M (1999) Boundary element analysis of Kirchhoff plates with direct evaluation of hypersingular integrals. Int J Numer Meth Eng

  29. Benson D, Bazilevs Y, Hsu M, Hughes T (2010) Isogeometric shell analysis: The Reissner–Mindlin shell. Comput Method Appl Mech Eng 199(5):276–289

    Article  MathSciNet  MATH  Google Scholar 

  30. da Veiga LB, Hughes TJR, Kiendl J, Lovadina C, Niiranen J, Reali A, Speleers H (2015) A locking-free model for Reissner–Mindlin plates: analysis and isogeometric implementation via NURBS and triangular NURPS. Math Models Methods Appl Sci 25(08):1519–1551

    Article  MathSciNet  MATH  Google Scholar 

  31. Kiendl J, Bletzinger KU, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff–Love elements. Comput Method Appl Mech Eng 198(49):3902–3914

    Article  MathSciNet  MATH  Google Scholar 

  32. Kiendl J, Hsu MC, Wu MC, Reali A (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Comput Method Appl Mech Eng 291:280–303

    Article  MathSciNet  MATH  Google Scholar 

  33. Zou Z, Hughes T, Scott M, Sauer R, Savitha E (2021) Galerkin formulations of isogeometric shell analysis: alleviating locking with Greville quadratures and higher-order elements. Comput Method Appl Mech Eng 380:113757

    Article  MathSciNet  Google Scholar 

  34. Zou Z, Scott M, Miao D, Bischoff M, Oesterle B, Dornisch W (2020) An isogeometric Reissner–Mindlin shell element based on Brézier dual basis functions: overcoming locking and improved coarse mesh accuracy. Comput Method Appl Mech Eng 370:113283

    Article  MATH  Google Scholar 

  35. Henshaw WD (2006) A high-order accurate parallel solver for Maxwell’s equations on overlapping grids. SIAM J Sci Comput 28(5):1730–1765

    Article  MathSciNet  MATH  Google Scholar 

  36. Lambert JD (1973) Computational methods in ordinary differential equations. Cambridge University Press, New York

    MATH  Google Scholar 

  37. Papkova IV, Awrejcewicz NJ, Krysko AV, Krylova EY, Krysko VA (2020) Theory of flexible mesh-type shallow Kirchhoff-love structures based on the modified couple stress theory, vol 134, chap. 17. Springer, Cham, pp 331–344

  38. Newmark NM (1959) A method of computation for structural dynamics. Proc Am Soc Civil Eng 85:67–74

    Google Scholar 

  39. Li M, Guan X, Mao S (2014) New error estimates of the Morley element for the plate bending problems. J Comput Appl Math 263:405–416

    Article  MathSciNet  MATH  Google Scholar 

  40. Ming W, Xu J (2006) The Morley element for fourth order elliptic equations in any dimensions. Numer Math 103:155–169

    Article  MathSciNet  MATH  Google Scholar 

  41. Morley LSD (1968) The triangular equilibrium element in the solution of plate bending problems. Aero Q 19:149–169

    Article  Google Scholar 

  42. Ciarlet PG (2002) The finite element method for elliptic problems. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  43. Bukač M, Čanič S, Glowinski R, Tambača J, Quaini A (2013) Fluid-structure interaction in blood flow capturing non-zero longitudinal structure displacement. J Comput Phys 235:515–541

    Article  MathSciNet  Google Scholar 

  44. Bukač M, Čanič S, Muha B (2015) A partitioned scheme for fluid-composite structure interaction problems. J Comput Phys 281:493–517

    Article  MathSciNet  MATH  Google Scholar 

  45. Bukač M, Čanič S, Tambača J, Wang Y (2019) Fluid-structure interaction between pulsatile blood flow and a curved stented coronary artery on a beating heart: a four stent computational study. Comput Method Appl Mech Eng 350:679–700

    Article  MathSciNet  MATH  Google Scholar 

  46. Tuan PH, Wen CP, Chiang PY, Yu YT, Liang HC, Huang KF, Chen YF (2015) Exploring the resonant vibration of thin plates: reconstruction of Chladni patterns and determination of resonant wave numbers. J Acoust Soc Am 137:2113–2123

    Article  Google Scholar 

  47. Chugh A (2007) Natural vibration characteristics of gravity structures. Int J Numer Anal Meth Geomech 31:607–648

    Article  MATH  Google Scholar 

  48. Chesshire GS, Henshaw WD (1990) Composite overlapping meshes for the solution of partial differential equations. J Comput Phys 90(1):1–64

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the Louisiana Board of Regents Support Fund under contract No. LEQSF(2018-21)-RD-A-23. L. Li is grateful to Professor W.D. Henshaw of Rensselaer Polytechnic Institute (RPI) for helpful conversations. Portions of this research were conducted with high performance computational resources provided by the Louisiana Optical Network Infrastructure (http://www.loni.org).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longfei Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Nodal line patterns for the eigenvalue problem

Appendix A: Nodal line patterns for the eigenvalue problem

We show the results of the eigenvalue problem (31) here. Nodal lines of the first 25 eigenmodes (with multiplicity) for the square plate with clamped edges and the annular plate with simply supported boundaries are shown in Figs. 18 and 19, respectively. The eigenmodes plotted for each degenerated pair are arbitrary so they can be asymmetric.

Fig. 18
figure 18

Nodal lines of the first 25 eigenmodes (with multiplicity) of the clamped square plate. There are 6 degenerate pairs of eigenmodes, so that only 19 distinct normalized eigenvalues are represented. Values reported in the plots are the natural frequencies in increasing order

Fig. 19
figure 19

Nodal lines of the first 25 eigenmodes (with multiplicity) of the simply supported annular plate. There are 11 degenerate pairs of eigenmodes, so that only 14 distinct eigenvalues are represented. Values reported in the plots are the natural frequencies in increasing order

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, D.T.A., Li, L. & Ji, H. Stable and accurate numerical methods for generalized Kirchhoff–Love plates. J Eng Math 130, 6 (2021). https://doi.org/10.1007/s10665-021-10163-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10665-021-10163-x

Keywords

Navigation