Skip to main content

Advertisement

Log in

Low-carbon society creation and socio-economic structural transition in China

  • REVIEW
  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

China is facing the problem of climate change, environment protection and energy security. Therefore, China has to create a low-carbon society to address them. The purpose of this paper is to make a comprehensive and in-depth analysis of China’s reality and transition to a low-carbon society. The research indicates that China’s transition to low-carbon society will inevitably meet many difficulties under the relatively backward situation of China’s socio-economic structure and technologies at the current stage. Therefore, China has to take concrete policies and countermeasures to promote its development gradually. In particular, China has to vigorously promote the innovation of low carbon system, technologies, subsidy and tax, financing and investment to lay groundwork for comprehensive development of low-carbon society.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andrews-Speed, P., van der Linde, C., & Keramidas, K. (2014). Conflict and cooperation over access to energy: Implications for a low-carbon future. Futures, 58, 103–114.

    Article  Google Scholar 

  • Ashina, S., Fujino, J., Masui, T., Fujiwara, K., Hibino, G., Kainuma, M., & Matsuoka, Y. (2010). Japan roadmaps toward low-carbon society by backcasting: Optimal CO2 reduction pathways and investment timing for low-carbon technologies. Journal of Renewable and Sustainable Energy, 2, 1–17.

    Article  Google Scholar 

  • Auld, G., Mallett, A., Burlica, B., Nolan-Poupart, F., & Slater, R. (2014). Evaluating the effects of policy innovations: Lessons from a systematic review of policies promoting low-carbon technology. Global Environmental Change, 29, 444–458.

    Article  Google Scholar 

  • Barron, R., & McJeon, H. (2015). The differential impact of low-carbon technologies on climate change mitigation cost under a range of socioeconomic and climate policy scenarios. Energy Policy, 80, 264–274.

    Article  Google Scholar 

  • Brown, L. R. (2009). Plan B4.0: Mobilizing to save civilization (pp. 18–22). Washington, DC: Earth Policy Institute.

    Google Scholar 

  • Cai, H. (2009). Low carbon economy: Green revolution and pattern of global innovation competition. Beijing: Economic Science Press. (in Chinese).

    Google Scholar 

  • Cai, B. F., Wang, J. N., Yang, W. S., Liu, L. C., & Cao, D. (2012). Low carbon society in China: research and practice. Advances in Climate Change Research, 3(2), 106–120.

    Article  Google Scholar 

  • Campiglio, E. (2015). Beyond carbon pricing: the role of banking and monetary policy in financing the transition to a low-carbon economy. Ecology Economy. doi:10.1016/j.ecolecon.2015.03.020.

  • Carraro, C., Favero, A., & Massetti, E. (2012). Investments and public finance in a green, low carbon, economy. Energy Economy, 34, s15–s28.

    Article  Google Scholar 

  • Carvalho, M. da G., Bonifacio, M., & Dechamps, P. (2011). Building a low carbon society. Energy, 36, 1842–1847.

    Article  Google Scholar 

  • Chen, W. Y. (2015). The role of urban green infrastructure in offsetting carbon emissions in 35 major Chinese cities: A nationwide estimate. Cities, 44, 112–120.

    Article  Google Scholar 

  • Chitnis, M., Druckman, A., Hunt, L. C., Jackson, T., & Milne, S. (2012). Forecasting scenarios for UK household expenditure and associated GHG emissions: Outlook to 2030. Ecological Economics, 84, 129–141.

    Article  Google Scholar 

  • Cui, L. B., Fan, Y., Zhu, L., & Bi, Q. H. (2014). How will the emissions trading scheme save cost for achieving China’s 2020 carbon intensity reduction target? Applied Energy, 136, 1043–1052.

    Article  Google Scholar 

  • Dinan, T. M. (2009). Reducing greenhouse gas emissions with a tax or a cap: Implications for efficiency and cost effectiveness. National Tax Journal, 3, 535–553.

    Article  Google Scholar 

  • Dong, L., Gu, F. M., Fujita, T., Hayashi, Y., & Gao, J. (2014). Uncovering opportunity of low-carbon city promotion with industrial system innovation: Case study on industrial symbiosis projects in China. Energy Policy, 65, 388–397.

    Article  Google Scholar 

  • Dou, X. S. (2009). Strategic reflection on the problem of agriculture, country and peasant. Scientific Decision Making, 10, 1–15.

    Google Scholar 

  • Dou, X. S. (2013a). Low carbon economy development: China’s road and policy selection. Journal of Management and Sustainability, 3, 95–114.

    Article  Google Scholar 

  • Dou, X. S. (2013b). Low carbon economy development: China’s pattern and policy selection. Energy Policy, 63, 1013–1020.

    Article  Google Scholar 

  • Dou, X. S. (2015). Essence, feature and role of low carbon economy. Environment, Development and Sustainability, 17, 123–136.

    Article  Google Scholar 

  • Dou, X. S., Li, S. S., & Wang, J. (2013a). Ecological strategy of city sustainable development. APCBEES Procedia, 5, 410–415.

    Article  Google Scholar 

  • Dou, X. S., Liu, M. J., & Wang, H. F. (2013b). Innovation strategy of low carbon technology in China: technology for market. International Journal of Environmental Science and Development, 4, 33–238.

    Google Scholar 

  • Dou, X. S., Xie, J. J., & Ye, Z. L. (2013c). Policy design and implementation issues of regulating greenhouse gas emissions in China. International Journal of Environmental Science and Development, 4, 321–326.

    Article  Google Scholar 

  • Fan, J. L., Yu, H., & Wei, Y. M. (2015). Residential energy-related carbon emissions in urban and rural China during 1996–2012: From the perspective of five end-use activities. Energy and Buildings, 96, 201–209.

    Article  Google Scholar 

  • Fang, G. C., Tian, L. X., Fu, M., & Sun, M. (2014). Government control or low carbon lifestyle? Analysis and application of a novel selective-constrained energy-saving and emission-reduction dynamic evolution system. Energy Policy, 68, 498–507.

    Article  Google Scholar 

  • Fathima, A. H., & Palanisamy, K. (2015). Optimization in microgrids with hybrid energy systems—a review. Renewable & Sustainable Energy Reviews, 45, 431–446.

    Article  Google Scholar 

  • Glemarec, Y. (2010). Financing the transition to a low-carbon society. Journal of Renewable and Sustainable Energy, 2, 1–12.

    Article  Google Scholar 

  • Gomi, K., Ochi, Y., & Matsuok, Y. (2010). A concrete roadmap toward a low-carbon society in case of Kyoto city. Journal of Renewable and Sustainable Energy, 2, 1–21.

    Google Scholar 

  • Guan, D. B., Hubacek, K., Weber, C. L., Peters, G. P., & Reiner, D. M. (2008). The drivers of Chinese CO2 emissions from 1980 to 2030. Global Environmental Change, 18, 626–634.

    Article  Google Scholar 

  • Hao, H., Wang, H. W., Song, L. J., Li, X. H., & Ouyang, M. G. (2010). Energy consumption and GHG emissions of GTL fuel by LCA: results from eight demonstration transit buses in Beijing. Applied Energy, 87, 3212–3217.

    Article  CAS  Google Scholar 

  • Heiskanen, E., Johnson, M., Robinson, S., Vadovics, E., & Saastamoinen, M. (2010). Low-carbon communities as a context for individual behavioural change. Energy Policy, 38, 7586–7595.

    Article  Google Scholar 

  • Homma, T., Akimoto, K., & Tomoda, T. (2012). Quantitative evaluation of time-series GHG emissions by sector and region using consumption-based accounting. Energy Policy, 51, 816–827.

    Article  Google Scholar 

  • Hook, M., & Tang, X. (2013). Depletion of fossil fuels and anthropogenic climate change—a review. Energy Policy, 52, 797–809.

    Article  Google Scholar 

  • Hourcade, J. C., & Crassous, R. (2008). Low-carbon societies: A challenging transition for an attractive future. Climate Policy, 8, 607–612.

    Article  Google Scholar 

  • Htun, N., Messner, D., Mahajan, D., Nishioka, S., & Zhang, X. L. (2010). Introduction to special topic: Energy pathways to a low-carbon society. Journal of Renewable and Sustainable Energy, 2, 1–2.

    Article  Google Scholar 

  • Institute of Climate Change and Low-carbon Economy of Renmin University of China (ICCLCERUC). (2010). Low Carbon Economy—China Told the Copenhagen with Action. Petroleum Industry Press: Beijing (in Chinese)

  • Iyer, G., Hultman, N., Eom, J. Y., McJeon, H., Patel, P., & Clarke, L. (2015). Diffusion of low-carbon technologies and the feasibility of long-term climate targets. Technology Forecasting and Social Change, 90, 103–118.

    Article  Google Scholar 

  • Jin, Y., & de Jakob, S. A. (2009). Resources, energy, environment, society—science and engineering principles of circular economy. Beijing: Chemical Industry Press. (in Chinese).

    Google Scholar 

  • Kainuma, M., Shukla, P. R., & Jiang, K. J. (2012). Framing and modeling of a low carbon society: An overview. Energy Economy, 34, s316–s324.

    Article  Google Scholar 

  • Kennedy, C., & Corfee-Morlot, J. (2013). Past performance and future needs for low carbon climate resilient infrastructure– an investment perspective. Energy Policy, 59, 773–783.

    Article  Google Scholar 

  • Khanna, N., Fridley, D., & Hong, L. X. (2014). China’s pilot low-carbon city initiative: A comparative assessment of national goals and local plans. Sustainable Cities and Society, 12, 110–121.

    Article  Google Scholar 

  • Kokic, P., Crimp, S., & Howden, M. (2014). A probabilistic analysis of human influence on recent record global mean temperature changes. Climate Risk Management, 3, 1–12.

    Article  Google Scholar 

  • Krahé, M., Heidug, W., Ward, J., & Smale, R. (2013). From demonstration to deployment: An economic analysis of support policies for carbon capture and storage. Energy Policy, 60, 753–763.

    Article  Google Scholar 

  • Lau, L. C., Lee, K. T., & Mohamed, A. R. (2012). Global warming mitigation and renewable energy policy development from the Kyoto Protocol to the Copenhagen Accord—a comment. Renewable & Sustainable Energy Reviews., 16, 5280–5284.

    Article  Google Scholar 

  • Liu, Y. (2014). Barriers to the adoption of low carbon production: a multiple-case study of Chinese industrial firms. Energy Policy, 67, 412–421.

    Article  Google Scholar 

  • Liu, Z. Y., Mao, X. Q., Tu, J. J., & Jaccard, M. (2014a). A comparative assessment of economic-incentive and command- and control instruments for air pollution and CO2 control in China’s iron and steel sector. J Environ Manag., 144, 135–142.

    Article  Google Scholar 

  • Liu, W., Tian, J. P., & Chen, L. J. (2014b). Greenhouse gas emissions in China’s eco-industrial parks: a case study of the Beijing Economic Technological Development Area. Journal of Cleaner Production, 66, 384–391.

    Article  CAS  Google Scholar 

  • Liu, L. X., Zhang, B., Bi, J., Wei, Q., & Pan, H. (2012). The greenhouse gas mitigation of industrial parks in China: A case study of Suzhou Industrial Park. Energy Policy, 46, 301–307.

    Article  CAS  Google Scholar 

  • Lu, Y. Y., Stegman, A., & Cai, Y. Y. (2013). Emissions intensity targeting: from China’s 12th Five Year Plan to its Copenhagen commitment. Energy Policy, 61, 1164–1177.

    Article  Google Scholar 

  • Manzano-Agugliaro, F., Alcayde, A., Montoya, F. G., Zapata-Sierra, A., & Gil, C. (2013). Scientific production of renewable energies worldwide: an overview. Renewable & Sustainable Energy Reviews., 18, 134–143.

    Article  Google Scholar 

  • Mat, N., Cerceau, J., Shi, L., Park, H. S., Junqua, G., & Lopez-Ferber, M. (2016). Socio-ecological transitions toward low-carbon port cities: Trends, changes and adaptation processes in Asia and Europe. Journal of Cleaner Production, 114, 362–375.

    Article  Google Scholar 

  • Mathews, J. A. (2011). Naturalizing capitalism: the next great transformation. Futures, 43, 868–879.

    Article  Google Scholar 

  • Mo, H. P., Wen, Z. G., & Chen, J. N. (2009). China’s recyclable resources recycling system and policy: A case study in Suzhou. Resources, Conservation and Recycling, 53, 409–419.

    Article  Google Scholar 

  • Moriarty, P., & Honnery, D. (2012). Preparing for a low-energy future. Futures, 44, 883–892.

    Article  Google Scholar 

  • Munoz-Vallés, S., Cambrollé, J., Figueroa-Luque, E., Luque, T., Niell, F. X., & Figueroa, M. E. (2013). An approach to the evaluation and management of natural carbon sinks: From plant species to urban green systems. Urban Forestry and Urban Greening, 12, 450–453.

    Article  Google Scholar 

  • Nel, W. P., & Cooper, C. J. (2009). Implications of fossil fuel constraints on economic growth and global warming. Energy Policy, 37, 166–180.

    Article  Google Scholar 

  • Ou, X. M., Zhang, X. L., & Chang, S. Y. (2010). Alternative fuel buses currently in use in China: life-cycle fossil energy use, GHG emissions and policy recommendations. Energy Policy, 38, 406–418.

    Article  CAS  Google Scholar 

  • Ouyang, X. L., & Lin, B. Q. (2015). An analysis of the driving forces of energy-related carbon dioxide emissions in China’s industrial sector. Renewable & Sustainable Energy Reviews, 45, 838–849.

    Article  CAS  Google Scholar 

  • Rai, V., Schultz, K., & Funkhouser, E. (2014). International low carbon technology transfer: Do intellectual property regimes matter? Global Environmental Change, 24, 60–74.

    Article  Google Scholar 

  • Roy, J., Ghosh, D., Ghosh, A., & Dasgupta, S. (2013). Fiscal instruments: Crucial role in financing low carbon transition in energy systems. Current Opinion in Environmental Sustainability, 5, 261–269.

    Article  Google Scholar 

  • Schroeder, P. M., & Chapman, R. B. (2014). Renewable energy leapfrogging in China’s urban development? Current status and outlook. Sustainable Cities and Society, 11, 31–39.

    Article  Google Scholar 

  • Schwanen, T., Banister, D., & Anable, J. (2012). Rethinking habits and their role in behaviour change: The case of low-carbon mobility. Journal of Transport Geography, 24, 522–532.

    Article  Google Scholar 

  • Sevigné-Itoiz, E., Gasol, C. M., Rieradevall, J., & Gabarrell, X. (2014). Environmental consequences of recycling aluminum old scrap in a global market. Resour Conserv Recy., 89, 94–103.

    Article  Google Scholar 

  • Seyfang, G. (2010). Community action for sustainable housing: Building a low-carbon future. Energy Policy, 38, 7624–7633.

    Article  Google Scholar 

  • Song, J. N., Yang, W., Higano, Y., & Wang, X. E. (2015). Introducing renewable energy and industrial restructuring to reduce GHG emission: Application of a dynamic simulation model. Energy Conversion and Management, 96, 625–636.

    Article  Google Scholar 

  • Spangenberg, J. H. (2010). World civilisations at crossroads: Towards an expansionist or a sustainable future—lessons from history. Futures, 42, 565–573.

    Article  Google Scholar 

  • Tang, L., Wu, J. Q., Yu, L. A., & Bao, Q. (2015). Carbon emissions trading scheme exploration in China: A multi-agent-based model. Energy Policy, 81, 152–169.

    Article  CAS  Google Scholar 

  • Timilsina, G. R. (2009). Carbon tax under the clean development mechanism: A unique approach for reducing greenhouse gas emissions in developing countries. Climate Policy, 9, 139–154.

    Article  Google Scholar 

  • UK Department of Trade and Industry (UKDTI). (2003). Our energy Future: Creating a low carbon economy. London: UK Energy White Paper.

    Google Scholar 

  • Wang, N. N. (2014). The role of the construction industry in China’s sustainable urban development. Habitat International, 44, 442–450.

    Article  Google Scholar 

  • Wang, C., Lin, J., Cai, W. J., & Liao, H. (2014). China’s carbon mitigation strategies: Enough? Energy Policy, 73, 47–56.

    Article  Google Scholar 

  • Wang, T., & Watson, J. (2010). Scenario analysis of China’s emissions pathways in the 21st century for low carbon transition. Energy Policy, 38, 3537–3546.

    Article  Google Scholar 

  • Wang, Y. L., Zhu, Q. H., & Geng, Y. (2013). Trajectory and driving factors for GHG emissions in the Chinese cement industry. Journal of Cleaner Production, 53, 252–260.

    Article  CAS  Google Scholar 

  • Wübbeke, J., & Heroth, T. (2014). Challenges and political solutions for steel recycling in China. Resources, Conservation and Recycling, 87, 1–7.

    Article  Google Scholar 

  • Xia, X. H., Hu, Y., Alsaedi, A., Hayat, T., Wu, X. D., & Chen, G. Q. (2015). Structure decomposition analysis for energy-related GHG emission in Beijing: Urban metabolism and hierarchical structure. Ecological Informatics, 26, 60–69.

    Article  Google Scholar 

  • Xing, J. J., Huang, D., & Zhao, G. (2010). Low carbon economy report. Beijing: Electronic Industry Press. (in Chinese).

    Google Scholar 

  • Xu, X. S., Zhao, T., Liu, N., & Kang, J. D. (2014). Changes of energy-related GHG emissions in China: An empirical analysis from sectoral perspective. Applied Energy, 132, 298–307.

    Article  Google Scholar 

  • Ye, B. Q., Wang, X. C., Tao, N. P., Zhu, Q. C., & Hua, C. X. (2014). Research on progress of utilisation of fish processing by-products. Food Research Development, 35(21), 16–19. (in Chinese).

    Google Scholar 

  • Yuan, J. H., Xu, Y., Zhang, X. P., Hu, Z., & Xu, M. (2014). China’s 2020 clean energy target: consistency, pathways and policy implications. Energy Policy, 65, 692–700.

    Article  Google Scholar 

  • Zeng, M., Liu, X. M., Li, Y. L., & Peng, L. L. (2014). Review of renewable energy investment and financing in China: Status, mode, issues and countermeasures. Renewable & Sustainable Energy Reviews, 31, 23–37.

    Article  Google Scholar 

  • Zhang, S. F., Andrews-Speed, P., & Ji, M. Y. (2014a). The erratic path of the low-carbon transition in China: Evolution of solar PV policy. Energy Policy, 67, 903–912.

    Article  Google Scholar 

  • Zhang, W., Jin, Y. G., & Wang, J. P. (2015). Greenization of venture capital and green innovation of Chinese entity industry. Ecological Indicators, 51, 31–41.

    Article  CAS  Google Scholar 

  • Zhang, N., Kong, F. B., Choi, Y., & Zhou, P. (2014b). The effect of size-control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants. Energy Policy, 70, 193–200.

    Article  Google Scholar 

  • Zhao, S. S., & Dou, X. S. (2011). The determination of carbon emission tax rate under the Ramsey rule. J Indus Tech Econ., 214, 54–59. (in Chinese).

    Google Scholar 

  • Zhou, W. J., Zhu, B., Chen, D. J., Zhao, F. X., & Fei, W. Y. (2014). How policy choice affects investment in low-carbon technology: the case of CO2 capture in indirect coal liquefaction in China. Energy, 73, 670–679.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by a research Grant (10XJY004) from the National Social Science Foundation of China. The author appreciates generous support from the funds. The constructive comments of anonymous reviewers are thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangsheng Dou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, X., Cui, H. Low-carbon society creation and socio-economic structural transition in China. Environ Dev Sustain 19, 1577–1599 (2017). https://doi.org/10.1007/s10668-016-9834-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-016-9834-3

Keywords

Navigation