Skip to main content
Log in

Nanomaterial risk screening: a structured approach to aid decision making under uncertainty

  • Published:
Environment Systems and Decisions Aims and scope Submit manuscript

Abstract

The responsible development of new nanomaterials and nano-enabled products requires that potential risks are understood and managed before harms occur. Although quantitative and predictive tools for anticipating human health and environmental risk are in early stages of development, there is a clear need for screening methodologies to inform decision making related to nanomaterial risk management in regulatory agencies and industry. This paper presents the results of a two-day workshop with nanotechnology experts aimed at developing a risk-screening framework for nanomaterials. Drawing upon expertise in nanotoxicology, human exposure, environmental fate and transport, and structured decision making, participants developed a decision support framework relating key nanomaterial physicochemical and product characteristics to important hazard and exposure indicators. Application of the preliminary nano-risk-screening tool (NRST) to several test cases illustrates the utility of the approach for both identifying nanomaterial characteristics that drive risks and for highlighting opportunities to redesign products to minimize risks. This framework for aiding risk managers’ decisions under uncertainty provides the foundation for the development of a transparent and adaptable screening tool that can inform the management of potential risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Auffan M, Rose J, Bottero J-Y et al (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–641. doi:10.1038/nnano.2009.242

    Article  CAS  Google Scholar 

  • Beaudrie CEH, Satterfield T, Kandlikar M, Harthorn BH (2013) Expert views on regulatory preparedness for managing the risks of nanotechnologies. PLoS ONE 8:e80250. doi:10.1371/journal.pone.0080250

    Article  CAS  Google Scholar 

  • Berube D, Cummings C, Cacciatore M (2011) Characteristics and classification of nanoparticles: expert Delphi survey. Nanotoxicology 5:236–243. doi:10.3109/17435390.2010.521633

    Article  CAS  Google Scholar 

  • Bosso CJ (2010) Governing uncertainty: environmental regulation in the age of nanotechnology. Routledge

  • Braydich-Stolle LK, Schaeublin NM, Murdock RC et al (2008) Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J Nanopart Res 11:1361–1374. doi:10.1007/s11051-008-9523-8

    Article  Google Scholar 

  • Burgman MA (2005) Risks and decisions for conservation and environmental management. 1–485

  • Choi J, Ramachandran G, Kandlikar M (2009) The impact of toxicity testing costs on nanomaterial regulation. Environ Sci Technol 137–156

  • Cooke RM (1991) Experts in uncertainty: opinion and subjective probability in science. Oxford University Press, New York

    Google Scholar 

  • Cronin M, Jaworska J, Walker J et al (2003) Use of QSARs in international decision-making frameworks to predict health effects of chemical substances. Environ Health Perspect 111:1391

    Article  CAS  Google Scholar 

  • Eckelman MJ, Mauter MS, Isaacs JA, Elimelech M (2012) New perspectives on nanomaterial aquatic ecotoxicity: production impacts exceed direct exposure impacts for carbon nanotoubes. Environ Sci Technol 46:2902–2910. doi:10.1021/es203409a

    Article  CAS  Google Scholar 

  • EFSA Scientific Committee (2011) Guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. doi: 10.2903/j.efsa.2011.2140

  • Flari V, Chaudhry Q, Neslo R, Cooke R (2011) Expert judgment based multi-criteria decision model to address uncertainties in risk assessment of nanotechnology-enabled food products. J Nanopart Res 13:1813–1831. doi:10.1007/s11051-011-0335-x

    Article  CAS  Google Scholar 

  • Global Industry Analysts Inc (2010) Nanotechnology—a global strategic business report, MCP-1031

  • Gregory R, Failing L, Harstone M et al (2012) Structured decision making: a practical guide to environmental management choices. Wiley-Blackwell, London

    Book  Google Scholar 

  • Grieger K, Linkov I, Hansen SF, Baun A (2012) Environmental risk analysis for nanomaterials: review and evaluation of frameworks. Nanotoxicology 6(2):196–212

    Article  Google Scholar 

  • Handy RD, Owen R, Valsami-Jones E (2008) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17:315–325. doi:10.1007/s10646-008-0206-0

    Article  CAS  Google Scholar 

  • Hansen SF, Larsen BH, Olsen SI, Baun A (2007) Categorization framework to aid hazard identification of nanomaterials. Nanotoxicology 1:243–250. doi:10.1080/17435390701727509

    Article  CAS  Google Scholar 

  • Harper SL, Carriere JL, Miller JM et al (2011) Systematic evaluation of nanomaterial toxicity: utility of standardized materials and rapid assays. ACS Nano 5:4688–4697. doi:10.1021/nn200546k

    Article  CAS  Google Scholar 

  • Hawkins NC, Evans JS (1989) Subjective estimation of toluene exposures: a calibration study of industrial hygienists. Appl Ind Hyg 4:61–68

    Article  CAS  Google Scholar 

  • Helmer O, Brown B, Gordon T (1966) Social technology. Basic Books, New York

    Google Scholar 

  • Hendren CO, Mesnard X, Dröge J, Wiesner MR (2011) Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ Sci Technol 45:2562–2569. doi:10.1021/es103300g

    Article  CAS  Google Scholar 

  • Henrion M (2013) Practical issues in constructing a Bayes’ belief network. arXiv cs.AI

  • Höck J, Epprecht T, Hofmann H et al (2010) Guidelines on the precautionary matrix for synthetic nanomaterials. Federal Office for Public Health and Federal Office for the Environment, Bern

    Google Scholar 

  • IPCC (2012) Meeting report of the intergovernmental panel on climate change expert meeting on geoengineering, 99 pp

  • Jiang J, Oberdörster G, Elder A et al (2008) Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology 2:33–42. doi:10.1080/17435390701882478

    Article  CAS  Google Scholar 

  • Kahn H, Wiener AJ, Bell D (1967) The year 2000: a framework for speculation on the next thirty-three years, 2 pp

  • Kandlikar M, Ramachandran G, Maynard A, Murdock B (2007) Health risk assessment for nanoparticles: a case for using expert judgment. J Nanopart Res 9:137–156

    Article  Google Scholar 

  • Keeney RL, Gregory RS (2005) Selecting attributes to measure the achievement of objectives. Oper Res 53:1–11. doi:10.1287/opre.1040.0158

    Article  Google Scholar 

  • Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1692. doi:10.1007/s11051-013-1692-4

    Article  Google Scholar 

  • Krewski D, Andersen ME, Mantus E, Zeise L (2009) Toxicity testing in the 21st Century: implications for human health risk assessment. Risk Anal 29:474–479. doi:10.1111/j.1539-6924.2008.01150.x

    Article  Google Scholar 

  • Krewski D, Acosta D Jr, Andersen M et al (2010) Toxicity testing in the 21st century: a vision and a strategy. J Toxicol Environ Health Part B 13:51–138. doi:10.1080/10937404.2010.483176

    Article  CAS  Google Scholar 

  • Linkov I, Satterstrom F, Steevens J, Ferguson E (2007) Multi-criteria decision analysis and environmental risk assessment for nanomaterials. J Nanopart Res

  • Linstone HA, Turoff M (1975) The Delphi method: techniques and applications. Addison-Wesley, Boston

    Google Scholar 

  • Ma H, Williams PL, Diamond SA (2013) Ecotoxicity of manufactured ZnO nanoparticles–A review. Environ Pollut. doi:10.1016/j.envpol.2012.08.011

    Google Scholar 

  • Money ES, Reckhow KH, Wiesner MR (2012) The use of Bayesian networks for nanoparticle risk forecasting: model formulation and baseline evaluation. Sci Total Environ 426:436–445. doi:10.1016/j.scitotenv.2012.03.064

    Article  CAS  Google Scholar 

  • Morgan K (2005) Development of a preliminary framework for informing the risk analysis and risk management of nanoparticles. Risk Anal 25:1621–1635. doi:10.1111/j.1539-6924.2005.00681.x

    Article  Google Scholar 

  • Morgan MG, Henrion M (1990) Uncertainty: a guide to dealing with uncertainty in quantitative risk and policy analysis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Morgan MG, Keith DW (1995) Subjective judgments by climate experts. Environ Sci Technol 29:468A–476A. doi:10.1021/es00010a753

    CAS  Google Scholar 

  • Morgan G, Pitelka L, Shevliakova E (2001) Elicitation of expert judgments of climate change impacts on forest ecosystems. Clim Change 49:279–307

    Article  CAS  Google Scholar 

  • Morris J, Willis J, De Martinis D et al (2010) Science policy considerations for responsible nanotechnology decisions. Nat Nanotechnol 6:73–77. doi:10.1038/nnano.2010.191

    Article  Google Scholar 

  • National Research Council (2007) Toxicity testing in the 21st century: a vision and a strategy. The National Academies Press, Washington, DC

    Google Scholar 

  • Nel A (2006) Toxic potential of materials at the nanolevel. Science 311:622–627. doi:10.1126/science.1114397

    Article  CAS  Google Scholar 

  • Nel AE, Nasser E, Godwin H et al (2013) A multi-stakeholder perspective on the use of alternative test strategies for nanomaterial safety assessment. ACS Nano 7:130807083151000. doi:10.1021/nn4037927

    Google Scholar 

  • Oberdörster G, Maynard A, Donaldson K et al (2005a) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Particle Fibre Toxicol 2:8

    Article  Google Scholar 

  • Oberdörster G, Oberdorster E, Oberdorster J (2005b) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839. doi:10.1289/ehp.7339

    Article  Google Scholar 

  • Paik S, Zalk D, Swuste P (2008) Application of a pilot control banding tool for risk level assessment and control of nanoparticle exposures. Ann Occup Hyg 52:419

    Article  CAS  Google Scholar 

  • Project on Emerging Nanotechnologies, Woodrow Wilson International Center for Scholars (2014) Consumer Products Inventory. http://www.nanotechproject.org/inventories/consumer/. Accessed 4 Jul 2014

  • Puzyn T, Leszczynska D, Leszczynski J (2009) Toward the development of nano-QSARs: advances and challenges. Small 5:2494–2509. doi:10.1002/smll.200900179

    Article  CAS  Google Scholar 

  • Ramachandran G (2001) Retrospective exposure assessment using Bayesian methods. Ann Occup Hyg 45:651–667

    Article  CAS  Google Scholar 

  • Ramachandran G (2003) Expert judgment and occupational hygiene: application to aerosol speciation in the nickel primary production industry. Ann Occup Hyg 47:461–475. doi:10.1093/annhyg/meg066

    Article  CAS  Google Scholar 

  • Ramachandran G, Vincent JH (1999) A Bayesian approach to retrospective exposure assessment. Appl Occup Environ Hyg. doi:10.1080/104732299302549

  • Risbey J, Kandlikar M (2002) Expert assessment of uncertainties in detection and attribution of climate change. Bull Am Meteorol Soc 83:1317–1326

    Article  Google Scholar 

  • Risbey JS, Kandlikar M, Karoly DJ (2001) A protocol to articulate and quantify uncertainties in climate change detection and attribution. Climate Res 16:61–78

    Article  Google Scholar 

  • Robichaud CO, Uyar A, Darby M et al (2009) Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environ Sci Technol 43:4227–4233

    Article  CAS  Google Scholar 

  • Schmidt KF (2007) Nanofrontiers: visions for the future of nanotechnology. Woodrow Wilson International Center for Scholars, pp 1–51

  • Sizing nanotechnology’s value chain. Lux Research, 2004. https://portal.luxresearchinc.com/reporting/research/document_excerpt/2650

  • Suttiponparnit K, Jiang J, Sahu M et al (2010) Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res Lett 6:27. doi:10.1007/s11671-010-9772-1

    Google Scholar 

  • Tervonen T, Linkov I, Figueira JR et al (2008) Risk-based classification system of nanomaterials. J Nanopart Res 11:757–766. doi:10.1007/s11051-008-9546-1

    Article  Google Scholar 

  • Walker K, Evans J, MacIntosh D (2001) Use of expert judgment in exposure assessment. Part I. Characterization of personal exposure to …. J Exposure Anal Environ Epidemiol

Download references

Acknowledgments

We would like to thank the workshop participants Vincent Castranova, Yoram Cohen, John Fortner, Greg Goss, Günter Oberdörster, Sam Paik, Gurumurthy Ramachandran, and Navid Saleh for their time, patience, and insight during a very productive workshop process, and Terre Satterfield for her ongoing support throughout this research. Thank you as well to the Center for Nanotechnology in Society at the University of California, Santa Barbara (CNS-UCSB) and the Center for Environmental Implications of Nanotechnology at University of California, Los Angeles (UC-CEIN) for their generous support, and to the Natural Sciences and Engineering Research Council of Canada (NSERC) for their support through an Alexander Graham Bell Canada Graduate Scholarship (CGS). This work was supported by Coop. Agreement DBI-0830117 from the US National Science Foundation (NSF) and the US Environmental Protection Agency (EPA) to the University of California Center for Environmental Implications of Nano-technology; by Award 1231231 to Decision Research from the US National Science Foundation, Program in Decision Risk and Management Science; and by Coop. Agreements SES 0531184 and SES 0938099 from the NSF to the Center for Nanotechnology in Society at the University of California, Santa Barbara. Any opinions, findings, and conclusions or recommendations expressed in the material are those of the authors and do not necessarily reflect the views of the NSF or the EPA. This work has not been subjected to EPA review, and no official endorsement should be inferred.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian E. H. Beaudrie.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 442 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beaudrie, C.E.H., Kandlikar, M., Gregory, R. et al. Nanomaterial risk screening: a structured approach to aid decision making under uncertainty. Environ Syst Decis 35, 88–109 (2015). https://doi.org/10.1007/s10669-014-9529-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10669-014-9529-y

Keywords

Navigation