Skip to main content
Log in

Development of RAPD and ISSR derived SCAR markers linked to Xca1Bo gene conferring resistance to black rot disease in cauliflower (Brassica oleracea var. botrytis L.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Black rot caused by Xanthomonas campestris pv. campestris (Xcc) (Pam.) is the most devastating disease of cauliflower (Brassica oleracea var. botrytis L.; 2n = 2x = 18), taking a heavy toll of the crop. In this study, a random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) derived sequence characterized amplified region (SCAR) markers linked to the black rot resistance locus Xca1bo were developed and evaluated as a screening tool for resistance. The RAPD marker OPO-04833 and ISSR marker ISSR-11635 were identified as closely linked at 1.6 cM distance to the black rot resistance locus Xca1bo. Both the markers OPO-04833 and ISSR-11635 were cloned, sequenced and converted into SCAR markers and validated in 17 cauliflower breeding lines having different genetic backgrounds. These SCAR markers (ScOPO-04833 and ScPKPS-11635) amplified common locus and showed 100% accuracy in differentiating resistant and susceptible plants of cauliflower breeding lines. The SCAR markers ScOPO-04833 and ScPKPS-11635 are the first genetic markers found to be linked to the black rot resistance locus Xca1bo in cauliflower. These markers will be very useful in black rot resistance marker assisted breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adam-Blondon AF, Sevignae M, Bannerot H, Dron M (1994) SCAR, RAPD and RFLP markers linked to a dominant gene (Are) conferring resistance to anthracnose in common bean. Theor Appl Genet 88:865–870

    Article  CAS  PubMed  Google Scholar 

  • Bi-hao C, Jian-jun L, Yong W, Guo-ju C (2009) Inheritance and identification of SCAR marker linked to bacterial wilt-resistance in eggplant. Afr J Biotech 8:5201–5207

    Google Scholar 

  • Dhanya K, Syamkumar S, Siju S, Sasikumar B (2011) SCAR markers for adulterant detection in ground chilli. Br Food J 113:656–668

    Article  Google Scholar 

  • Dhole VJ, Reddy K (2013) Development of a SCAR marker linked with a MYMV resistance gene in mungbean (Vigna radiata L. Wilczek). Plant Breed 132:127–132

    Article  CAS  Google Scholar 

  • Farinho M, Coelho P, Callier J, Svetleva D, Monteirio A, Leitao J (2004) Mapping of a locus for adult plant resistance to downy mildew in broccoli. Theor Appl Genet 109:1392–1398

    Article  CAS  PubMed  Google Scholar 

  • Giovannelli JL, Farnham MW, Wang M (2002) Development of sequence characterized amplified region markers linked to downy mildew resistance in broccoli. J Am Soc Hort Sci 1274:597–601

    Google Scholar 

  • Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research, 2nd edn. Wiley, New York

    Google Scholar 

  • Gupta PK, Varshney RK, Sharma PC, Ramesh B (1999) Molecular markers and their application in wheat breeding. Plant Breed 118:369–390

    Article  CAS  Google Scholar 

  • Gutierrez N, Avila CM, Rodriguez-Suarez C, Moreno MT, Torres AM (2007) Development of SCAR markers linked to a gene controlling absence of tannins in faba bean. Mol Breed 19:305–314

    Article  CAS  Google Scholar 

  • Hittalmani S, Foolad MR, Mew T, Rodriguez RL, Huang N (1995) Development of a PCR-based marker to identify rice blast resistance gene, Pi-2(t), in a segregation population. Theor Appl Genet 91:9–14

    Article  CAS  PubMed  Google Scholar 

  • Jamwal RS, Sharma PP (1986) Inheritance of resistance to black rot (Xanthomonas campestris pv. campestris) in cauliflower (Brassica oleracea var. botrytis). Euphytica 35:940–943

    Article  Google Scholar 

  • Jones N, Ougham H, Thomas H, Pasakinskiene I (2009) Markers and mapping revisited: finding your gene. New Phytol 183:935–966

    Article  CAS  PubMed  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lander ES, Green JP, Barlow AA, Daley M, Lincoln S, Newberg L (1987) MAPMAKER: an interactive computer package for constructing genetic linkage map of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Michelmore RW, Paran L, Kessli V (1991) Identification of markers linked to disease resistance genes by bulked segregation analysis rapid method to detect markers in specific genomic region is by using segregating population. Proc Nat Acad Sci USA 88:9824–9832

    Article  Google Scholar 

  • Morgante M, Olivieri AM (1993) PCR amplified microsatellites as markers in plant genetics. Plant J 3:175–182

    Article  CAS  PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panse VG, Sukhatme PV (1967) Statistical methods for Agric Work. ICAR, New Delhi

    Google Scholar 

  • Paran I, Michelmore RW (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor App Genet 85(8):985–993

    Article  CAS  Google Scholar 

  • Park SO, Coyne DP, Steadman JR, Crosby KM, Brick MA (2004) RAPD and SCAR markers linked to the Ur-6 Andean gene controlling specific rust resistance in common bean. Crop Sci 44:1799–1804

    Article  CAS  Google Scholar 

  • Reddy MP, Sarla N, Siddiq EA (2002) Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica 128:9–17

    Article  Google Scholar 

  • Saha P, Kalia P, Sharma P, Sharma TR (2014a) Race-specific genetics of resistance to black rot disease [Xanthomonas campestris pv. campestris (Xcc) (Pammel) Dowson] and the development of three random amplified polymorphic DNA markers in cauliflower. J Hort Sci Biotech 89:480–486

    Article  Google Scholar 

  • Saha P, Kalia P, Sonha H, Sharma TR (2014b) Molecular mapping of black rot resistance locus Xca1bo on chromosome 3 of Indian cauliflower (Brassica oleracea var. botrytis L.). Plant Breed 133(2):268–274

    Article  CAS  Google Scholar 

  • Sharma BR, Swarup V, Chatterjee SS (1977) Resistance to black rot disease (Xanthomonas campestris (Pam.) Dowson) in cauliflower. Scientia Hort 7:1–7

    Article  Google Scholar 

  • Sharma SR, Kapoor KS, Gill HS (1995) Screening against sclerotinia rot (Sclerotinia sclerotiorum), downy mildew (Peronospora parasitica) and black rot (Xanthomonas campestris) in cauliflower (Brassica oleracea var. botrytis subvar. cauliflora). Ind J Agri Sci 65:916–918

    Google Scholar 

  • Sharma TR, Shankar P, Singh BK, Jana TK, Madhav MS, Gaikwad K, Singh NK, Plaha P, Rathour R (2005) Molecular mapping of rice blast resistance gene Pi-K h in the rice variety Tetap. J Plant Biochem Biotech 14:127–133

    Article  CAS  Google Scholar 

  • Singh M, Chaudhuri I, Mandal SK, Chaudhuri RK (2011) Development of RAPD markers linked to fusarium wilt resistance gene in castor bean (Ricinus communis L.). Genet Eng Biotech J 28:1–9

    Google Scholar 

  • Snowdon RJ, Friedt W (2004) Molecular markers in Brassica oilseed breeding: current status and future possibilities. Plant Breed 123:1–8

    Article  CAS  Google Scholar 

  • Souframanien J, Gopalakrishna T (2006) ISSR and SCAR markers linked to the mungbean yellow mosaic virus (MYMV) resistance gene in blackgram [Vigna mungo (L.) Hepper]. Plant Breed 125:619–622

    Article  CAS  Google Scholar 

  • Srivastava RK, Mishra KS, Singh AK, Mohapatra T (2012) Development of a coupling-phase SCAR marker linked to the powdery mildew resistance gene ‘er1’ in pea (Pisum sativum L.). Euphytica 186:856–866

    Article  Google Scholar 

  • Tanksley SD, Young ND, Paterson AH, Bonierable MD (1989) RFLP mapping in plant breeding: new tools for old science. Bio Tech 7:257–264

    CAS  Google Scholar 

  • Taylor JD, Conway J, Roberts SJ, Astley D, Vicente JG (2002) Sources and origin of resistance to Xanthomonas campestris pv. campestris in Brassica genomes. Phytopathology 92:105–111

    Article  CAS  PubMed  Google Scholar 

  • Tewari RN, Chatterjee SS, Swarup V (1987) Inheritance of resistance to black rot (Xanthomonas campestris (Pam.) Dowson) in cabbage. Veg Sci 6:27–36

    Google Scholar 

  • Thakur BS, Korla BN, Khosla K (2003) Inheritance of black rot resistance in late cauliflower. Ann Agric Res 24:244–248

    Google Scholar 

  • Varalaxmi B (2009) Heterosis and combining ability for yield and its components in cauliflower. Indian J Hort 66:198–203

    Google Scholar 

  • Vicente JG, Taylor JD, Sharpe AG, Parkin IAP, Lydiate DJ, King GJ (2002) Inheritance of race-specific resistance to Xanthomonas campestris pv. campestris in Brassica genomes. Phytopathology 92:1134–1141

    Article  CAS  PubMed  Google Scholar 

  • Williams PH (1980) Black rot: a continuing threat to world crucifers. Plant Dis 64:736–742

    Article  Google Scholar 

  • Williams JGK, Kubelik AR, Livak J, Rafalski JA, Tingey SV (1990) DNA polymorphism amplified by arbitrary primers are useful as genetic marker. Nucleic Acids Res 18:6531–6535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wulff EG, Mguni CM, Mortensen CN (2002) Biological control of black rot (Xanthomonas campestris pv. campestris) of Brassicas with an antagonistic strain of Bacillus subtilis in Zimbabwe. Euro J Plant Pathol 108:317–325

    Article  Google Scholar 

  • Yu YG, Saghai Maroof MA, Buss GR (1996) Divergence and allelomorphic relationship of a soybean virus resistance gene based on tightly linked DNA microsatellite and RFLP markers. Theor Appl Genet 92:64–69

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Wang G, Wang M, Liu X, Zhao X, Yu Y, Zhang D, Yu S (2008) Identification of SCAR markers linked to or, a gene inducing beta-carotene accumulation in Chinese cabbage. Euphytica 164:463–471

    Article  CAS  Google Scholar 

  • Zheng C, Chang R, Qiu L, Chen P, Wu X, Chen S (2003) Identification and characterization of a RAPD/SCAR markers linked to a resistance gene for soybean mosaic virus in soybean. Euphytica 132:199–210

    Article  CAS  Google Scholar 

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. T. R. Sharma, Executive Director, National Agri-Food Biotechnology Institute (NABI), India for his valuable suggestions which led to improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Saha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalia, P., Saha, P. & Ray, S. Development of RAPD and ISSR derived SCAR markers linked to Xca1Bo gene conferring resistance to black rot disease in cauliflower (Brassica oleracea var. botrytis L.). Euphytica 213, 232 (2017). https://doi.org/10.1007/s10681-017-2025-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-017-2025-y

Keywords

Navigation