Skip to main content
Log in

Within-population variation in the chemistry of life: the stoichiometry of sexual dimorphism in multiple dimensions

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

In sexual species, phenotypic divergence between males and females, or sexual dimorphism, is often the source of the most staggering examples of phenotypic variation in nature. Theory suggests that exaggerated sexual traits should drive sex-specific nutritional demands. Advances in spectrometry enable rapid quantification of the elements that make up individuals and traits, which can be used to assess patterns of intraspecific variation and the contribution of nutritionally-demanding sexual traits to these patterns. We measured dimorphism in the whole body stoichiometry of Hyalella amphipods and examined whether nutritional demands of exaggerated sexual traits differ from those of similar traits not under sexual selection. We found striking sexual dimorphism in multivariate whole body elemental composition (i.e., the ionome), including elements important for organismal growth and performance. In males, the exaggerated, sexually-selected claw-like appendage (posterior gnathopod) differed significantly in mass-specific stoichiometry from a similarly sized and serially homologous non-sexual trait (fifth pereopod), indicating that there are fundamental differences in the construction of sexual traits in relation to similar traits that are not under sexual selection. While sexually selected traits do differ from non-sexual traits in their ionomes, we found that possessing an exaggerated trait does not change organismal stoichiometry, indicating that trait exaggeration may not be directly driving ionomic sexual dimorphism. Finally, we found that larger traits are not comparatively larger resource sinks for any element, suggesting that the possession of larger traits is not a function of greater allocation of resources. Together, we discovered substantial sexual dimorphism at the lowest level of organization, chemical elements. Such information illuminates predictions about dimorphisms in foraging behavior, nutritional physiology, and sex-specific selection on the underlying loci. High throughput, multidimensional data on sexual divergence in stoichiometric composition is a powerful tool in understanding the evolutionary ecology of sexual dimorphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahearn GA, Mandal PK, Mandal A (2004) Calcium regulation in crustaceans during the molt cycle: a review and update. Comp Biochem Physiol Part A 137:247–257

    Article  Google Scholar 

  • Andersson MB (1994) Sexual selection, 1st edn. Princeton University Press, Princeton

    Google Scholar 

  • Back JA, King RS (2013) Sex and size matter: ontogenetic patterns of nutrient content of aquatic insects. Freshw Sci 32:837–848

    Article  Google Scholar 

  • Bertram SM, Bowen M, Kyle M, Schade JD (2008) Extensive natural intraspecific variation in stoichiometric (C:N:P) composition in two terrestrial insect species. J Insect Sci 8:1–7

    Article  CAS  PubMed  Google Scholar 

  • Bertram SM, Whattam EM, Visanuvimol L et al (2009) Phosphorus availability influences cricket mate attraction displays. Anim Behav 77:525–530

    Article  Google Scholar 

  • Bonduriansky R (2007) Sexual selection and allometry: a critical reappraisal of the evidence and ideas. Evolution 61:838–849

    Article  PubMed  Google Scholar 

  • Bonduriansky R, Maklakov A, Zajitschek F, Brooks R (2008) Sexual selection, sexual conflict and the evolution of ageing and life span. Funct Ecol 22:443–453

    Article  Google Scholar 

  • Brosnan J, Brosnan M (2006) The sulfur-containing amino acids: an overview. J Nutr 136:16365–16405

    Google Scholar 

  • Connallon T, Cox RM, Calsbeek R (2010) Fitness consequences of sex-specific selection. Evolution 64:1671–1682

    Article  PubMed  Google Scholar 

  • Cothran RD, Jeyasingh PD (2010) Condition dependence of a sexually selected trait in a crustacean species complex: importance of the ecological context. Evolution 64:2535–2546

    Article  PubMed  Google Scholar 

  • Cothran RD, Kuzmic A, Wellborn GA, Relyea RA (2010) Phenotypic manipulation provides insights into the function of a sexually selected trait in a freshwater crustacean species complex. Anim Behav 80:543–549

    Article  Google Scholar 

  • Cothran RD, Stiff AR, Jeyasingh PD, Relyea RA (2012) Eutrophication and predation risk interact to affect sexual trait expression and mating success. Evolution 66:708–719

    Article  PubMed  Google Scholar 

  • Cotton S, Fowler K, Pomiankowski A (2004) Do sexual ornaments demonstrate heightened condition-dependent expression as predicted by the handicap hypothesis? Proc R Soc Lond B Biol Sci 271:771–783

    Article  Google Scholar 

  • Cowan RL, Hartsook EW, Whelan JB (1968) Calcium–strontium metabolism in white tailed deer as related to age and antler growth. Exp Biol Med 129:733–737

    Article  CAS  Google Scholar 

  • Cullen JT, Sherrell RM (2005) Effects of dissolved carbon dioxide, zinc, and manganese on the cadmium to phosphorus ratio in natural phytoplankton assemblages. Limnol Oceanogr 50:1193–1204

    Article  CAS  Google Scholar 

  • Dudley R, Kaspari M, Yanoviak SP (2012) Lust for salt in the western Amazon. Biotropica 44:6–9

    Article  Google Scholar 

  • Edwards TD, Cowell BC (1992) Population dynamics and secondary production of Hyalella azteca (Amphipoda) in Typha stands of a subtropical Florida lake. J N Am Benthol Soc 11:69–79

    Article  Google Scholar 

  • Ellegren H, Parsch J (2007) The evolution of sex-biased genes and sex-biased gene expression. Nat Rev Genet 8:689–698

    Article  CAS  PubMed  Google Scholar 

  • El-Sabaawi RW, Zandonà E, Kohler TJ et al (2012) Widespread intraspecific organismal stoichiometry among populations of the Trinidadian guppy. Funct Ecol 26:666–676

    Article  Google Scholar 

  • El-Sabaawi RW, Travis J, Zandonà E et al (2014) Intraspecific variability modulates interspecific variability in animal organismal stoichiometry. Ecol Evol 4:1505–1515

    Article  PubMed  PubMed Central  Google Scholar 

  • Elser JJ, Dobberfuhl DR, MacKay NA (1996) Organism size, life history, and N:P stoichiometry. Bioscience 46:674–684

    Article  Google Scholar 

  • Emlen DJ (2001) Costs and the diversification of exaggerated animal structures. Science 291:1534–1536

    Article  CAS  PubMed  Google Scholar 

  • Faerovig PJ, Hessen DO (2003) Allocation strategies in crustacean stoichiometry: the potential role of phosphorus in the limitation of reproduction. Freshw Biol 48:1782–1792

    Article  CAS  Google Scholar 

  • Fagan WF, Siemann E, Mitter C et al (2002) Nitrogen in insects: implications for trophic complexity and species diversification. Am Nat 160:784–802

    Article  PubMed  Google Scholar 

  • Fairbairn DJ, Roff DA (2006) The quantitative genetics of sexual dimorphism: assessing the importance of sex-linkage. Heredity 97:319–328. doi:10.1038/sj.hdy.6800895

    Article  CAS  PubMed  Google Scholar 

  • Frausto da Silva JJR, Williams RJP (1991) The biological chemistry of the elements: the inorganic chemistry of life. Oxford University Press, Oxford

    Google Scholar 

  • Giardini J-L, Yan ND, Heyland A (2015) Consequences of calcium decline on the embryogenesis and life history of Daphnia magna. J Exp Biol 218:2005–2014

    Article  PubMed  Google Scholar 

  • Gibbons WN, Mackie GL (1991) The relationship between environmental variables and demographic patterns of Hyalella azteca (Crustacea: Amphipoda). J N Am Benthol Soc 10:444–454

    Article  Google Scholar 

  • González AL, Fariña JM, Kay AD et al (2011) Exploring patterns and mechanisms of interspecific and intraspecific variation in body elemental composition of desert consumers. Oikos 120:1247–1255

    Article  Google Scholar 

  • Goos JM, Cothran RD, Jeyasingh PD (2014a) Subtle variation in phosphorus availability influences mating biology in Hyalella (Amphipoda: Hyalellidae) amphipods. Biol J Linn Soc 111:878–888

    Article  Google Scholar 

  • Goos JM, French BJ, Relyea RA et al (2014b) Sex-specific plasticity in body phosphorus content of Hyalella amphipods. Hydrobiologia 722:93–102

    Article  CAS  Google Scholar 

  • Goos JM, Cothran RD, Jeyasingh PD (2016) Sex-specific nutrient use and preferential allocation of resources to a sexually selected trait in Hyalella amphipods. J Exp Biol 219:649–657

    Article  PubMed  Google Scholar 

  • Gunatilaka A (1981) Biogeochemistry of strontium. In: Skoryna SC (ed) Handbook of stable strontium, 1st edn. Plenum Press, New York, pp 19–46

    Chapter  Google Scholar 

  • Hedrick A (2005) Environmental condition-dependent effects on a heritable, preferred male trait. Anim Behav 70:1121–1124

    Article  Google Scholar 

  • Hessen DO, Alstad NEW, Skardal L (2000) Calcium limitation in Daphnia magna. J Plankton Res 22:553–568

    Article  CAS  Google Scholar 

  • Houle D, Govindaraju DR, Omholt S (2010) Phenomics: the next challenge. Nat Rev Genet 11:855–866

    Article  CAS  PubMed  Google Scholar 

  • Jackson DA (1993) Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74:2204–2214

    Article  Google Scholar 

  • Karimi R, Folt CL (2006) Beyond macronutrients: element variability and multielement stoichiometry in freshwater invertebrates. Ecol Lett 9:1273–1283

    Article  PubMed  Google Scholar 

  • Kay AD, Ashton IW, Gorokhova E et al (2005) Toward a stoichiometric framework for evolutionary biology. Oikos 109:6–17

    Article  Google Scholar 

  • Kilham S, Kreeger D, Lynn S, Goulden C (1998) COMBO: a defined freshwater culture medium for algae and zooplankton. Hydrobiologia 377:147–159

    Article  CAS  Google Scholar 

  • Kotiaho JS (2001) Costs of sexual traits: a mismatch between theoretical considerations and empirical evidence. Biol Rev 76:365–376

    Article  CAS  PubMed  Google Scholar 

  • Lucu C (1990) Ionic regulatory mechanisms in crustacean gill epithelia. Comp Biochem Physiol Part A Physiol 97:297–306

    Article  Google Scholar 

  • Main TM, Dobberfuhl DR, Elser JJ (1997) N:P stoichiometry and ontogeny of crustacean zooplankton: a test of the growth rate hypothesis. Limnol Oceanogr 42:1474–1478

    Article  CAS  Google Scholar 

  • Markow TA, Dobberfuhl DR, Breitmeyer CM et al (1999) Elemental stoichiometry of Drosophila and their hosts. Funct Ecol 13:78–84

    Article  Google Scholar 

  • Markow TA, Coppola A, Watts TD (2001) How Drosophila males make eggs: it’s elemental. Proc R Soc Lond B Biol Sci 268:1527–1532

    Article  CAS  Google Scholar 

  • Matsumura M (1981) Strontium as the substitute for calcium in the excitation–contraction coupling of crayfish muscle fibers. In: Skoryna SC (ed) Handbook of stable strontium, 1st edn. Plenum Press, New York, pp 309–319

    Chapter  Google Scholar 

  • Morehouse NI, Nakazawa T, Booher CM et al (2010) Sex in a material world: why the study of sexual reproduction and sex-specific traits should become more nutritionally-explicit. Oikos 119:766–778

    Article  Google Scholar 

  • Morehouse RL, Dzialowski AR, Jeyasingh PD (2012) Impacts of excessive dietary phosphorus on zebra mussels. Hydrobiologia 707:73–80

    Article  Google Scholar 

  • Morritt D (1989) Ionic regulation in littoral and terrestrial amphipods (Crustacea: Amphipoda: Talitridae). J Exp Mar Biol Ecol 132:53–67

    Article  Google Scholar 

  • Nakazawa T (2011) The ontogenetic stoichiometric bottleneck stabilizes herbivore–autotroph dynamics. Ecol Res 26:209–216

    Article  Google Scholar 

  • Pilati A, Vanni MJ (2007) Ontogeny, diet shifts, and nutrient stoichiometry in fish. Oikos 116:1663–1674

    Article  Google Scholar 

  • Prater C, Wagner ND, Frost PC (2016) Effects of calcium and phosphorus limitation on the nutritional ecophysiology of Daphnia. Limnol Oceanogr 61:268–278

    Article  CAS  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Rowe L, Houle D (1996) The lek paradox and the capture of genetic variance by condition dependent traits. Proc R Soc Lond B Biol Sci 263:1415–1421

    Article  Google Scholar 

  • Schade J, Kyle M, Hobbie S et al (2003) Stoichiometric tracking of soil nutrients by a desert insect herbivore. Ecol Lett 6:96–101

    Article  Google Scholar 

  • Schou M (1957) Biology and pharmacology of the lithium ion. Pharmacol Rev 9:17–58

    CAS  PubMed  Google Scholar 

  • Schrauzer GN, Shrestha KP, Flores-Arce MF (1992) Lithium in scalp hair of adults, students, and violent criminals: effects of supplementation and evidence for interactions of lithium with vitamin B12 and with other trace elements. Biol Trace Elem Res 34:161–176

    Article  CAS  PubMed  Google Scholar 

  • Small GE, Pringle CM (2010) Deviation from strict homeostasis across multiple trophic levels in an invertebrate consumer assemblage exposed to high chronic phosphorus enrichment in a neotropical stream. Oecologia 162:581–590

    Article  PubMed  Google Scholar 

  • Tobler M, Alba DM, Arias-Rodríguez L, Jeyasingh PD (2016) Using replicated evolution in extremophile fish to understand diversification in elemental composition and nutrient excretion. Freshw Biol 61:158–171

    Article  CAS  Google Scholar 

  • Visanuvimol L, Bertram SM (2010) Dietary phosphorus availability influences female cricket lifetime reproductive effort. Ecol Entomol 35:386–395

    Article  Google Scholar 

  • Wellborn GA (1995) Determinants of reproductive success in freshwater amphipod species that experience different mortality regimes. Anim Behav 50:353–363

    Article  Google Scholar 

  • Wellborn GA (2000) Selection on a sexually dimorphic trait in ecotypes within the Hyalella azteca species complex (Amphipoda: Hyalellidae). Am Midl Nat 143:212–225

    Article  Google Scholar 

  • Wellborn GA, Bartholf SE (2005) Ecological context and the importance of body and gnathopod size for pairing success in two amphipod ecomorphs. Oecologia 143:308–316

    Article  PubMed  Google Scholar 

  • Wellborn GA, Broughton RE (2008) Diversification on an ecologically constrained adaptive landscape. Mol Ecol 17:2927–2936

    Article  CAS  PubMed  Google Scholar 

  • Woods H, Fagan W, Elser J, Harrison J (2004) Allometric and phylogenetic variation in insect phosphorus content. Funct Ecol 18:103–109

    Article  Google Scholar 

  • Wright SJ, Yavitt JB, Wurzburger N et al (2011) Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology 92:1616–1625

    Article  PubMed  Google Scholar 

  • Zahavi A (1975) Mate selection—a selection for a handicap. J Theor Biol 53:205–214

    Article  CAS  PubMed  Google Scholar 

  • Zehmer JK, Mahon SA, Capelli GM (2002) Calcium as a limiting factor in the distribution of the amphipod Gammarus pseudolimnaeus. Am Midl Nat 148:350–362

    Article  Google Scholar 

Download references

Acknowledgements

We thank P. Roy Chowdhury, J.B. Belden, and S.M. Morrison for their help in developing the ICP-OES protocol, and the three anonymous reviewers for their constructive comments that improved this manuscript. This work was supported in part by National Science Foundation Grant No. 0924401 and the Distinguished Graduate Fellowship from the Graduate College at Oklahoma State University. This research is part of the Ph.D. dissertation of JMG at Oklahoma State University. JMG thanks PDJ, M. Tobler, J.A. Steets, and M. Papeş for serving on the doctoral committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jared M. Goos.

Appendix

Appendix

See Tables 3, 4, 5, and 6.

Table 3 PC loadings for whole body ionomic analyses
Table 4 PC loadings for gnathopod and leg ionomic analyses
Table 5 PC loadings for ionomic analyses for males with and without gnathopods
Table 6 ANOVA results comparing elemental composition of males with and without gnathopods

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goos, J.M., Cothran, R.D. & Jeyasingh, P.D. Within-population variation in the chemistry of life: the stoichiometry of sexual dimorphism in multiple dimensions. Evol Ecol 31, 635–651 (2017). https://doi.org/10.1007/s10682-017-9900-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-017-9900-9

Keywords

Navigation