Skip to main content

Advertisement

Log in

A novel TP53 germline inframe deletion identified in a Spanish series of Li-fraumeni syndrome suspected families

  • Original Article
  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Li-Fraumeni syndrome (LFS) is an autosomal dominant, inherited tumor predisposition syndrome associated with heterozygous germline mutations in the TP53 gene. The molecular diagnosis of LFS is important to develop strategies for early detection and access to the genetic counseling. Our study evaluated germline TP53 mutations in Spanish families with a history suggestive of LFS. Germline TP53 alterations in 22 families with a history suggestive of LFS were evaluated by Sanger sequencing and multiplex ligation-dependent probe amplification. Loss of heterozygosity analysis and immunohistochemistry of the protein in the tumor were performed in order to evaluate the pathogenicity of a novel alteration detected. A total of seven TP53 mutations were detected, six point mutations (4 missense and 2 nonsense) and a novel inframe deletion. 93% of mutation carriers developed at least one malignancy (mainly breast cancer and sarcomas), with a mean age at diagnosis of the first tumor of 30.2 years. Two missense mutations acted as dominant-negative. The novel inframe mutation c.437_445del was located in the DNA-binding domain. This mutation segregated with cancer in the family, and both high expression of the protein and loss of the wild-type TP53 allele were detected in the tumor of the carrier. We have found a novel inframe deletion in TP53 that likely results in the loss of p53 function and acts in a non-dominant negative way, although further studies are necessary to clarify this issue. The identification of novel TP53 alterations is crucial for a personalized cancer-risk management of the Li-Fraumeni syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kamihara J, Rana HQ, Garber JE (2014) Germline TP53 mutations and the changing landscape of Li-Fraumeni syndrome. Hum Mutat 35:654–662. doi:10.1002/humu.22559

    Article  CAS  PubMed  Google Scholar 

  2. Vousden KH, Prives C (2009) Blinded by the Light: the growing complexity of p53. Cell 137:413–431. doi:10.1016/j.cell.2009.04.037

    Article  CAS  PubMed  Google Scholar 

  3. Mai PL, Best AF, Peters JA et al (2016) Risks of first and subsequent cancers among TP53 mutation carriers in the National Cancer Institute Li-Fraumeni syndrome cohort. Cancer 122:3673–3681. doi:10.1002/cncr.30248

    Article  CAS  PubMed  Google Scholar 

  4. Sorrell AD, Espenschied CR, Culver JO, Weitzel JN (2013) Tumor protein p53 (TP53) testing and Li-Fraumeni syndrome†¯: current status of clinical applications and future directions. Mol Diagn Ther 17:31–47. doi:10.1007/s40291-013-0020-0

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lalloo F, Varley J, Ellis D et al (2003) Prediction of pathogenic mutations in patients with early-onset breast cancer by family history. Lancet 361:1101–1102. doi:10.1016/S0140-6736(03)12856-5

    Article  CAS  PubMed  Google Scholar 

  6. Chompret A, Abel A, Stoppa-Lyonnet D et al (2001) Sensitivity and predictive value of criteria for p53 germline mutation screening. J Med Genet 38:43–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tinat J, Bougeard G, Baert-Desurmont S, et al (2009) 2009 version of the Chompret criteria for Li Fraumeni syndrome. J Clin Oncol 27:e108–e109. doi:10.1200/JCO.2009.22.7967

    Article  PubMed  Google Scholar 

  8. Bougeard G, Renaux-Petel M, Flaman J-M et al (2015) Revisiting Li-Fraumeni syndrome from TP53 mutation carriers. J Clin Oncol 33:2345–2352. doi:10.1200/JCO.2014.59.5728

    Article  CAS  PubMed  Google Scholar 

  9. Nguyen TA, Menendez D, Resnick MA, Anderson CW (2014) Mutant TP53 posttranslational modifications: challenges and opportunities. Hum Mutat 35:738–755. doi:10.1002/humu.22506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Villani A, Tabori U, Schiffman J et al (2011) Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: a prospective observational study. Lancet Oncol 12:559–567. doi:10.1016/S1470-2045(11)70119-X

    Article  CAS  PubMed  Google Scholar 

  11. Villani A, Shore A, Wasserman JD et al (2016) Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: 11 year follow-up of a prospective observational study. Lancet Oncol 17:1295–1305. doi:10.1016/S1470-2045(16)30249-2

    Article  CAS  PubMed  Google Scholar 

  12. Palmero EI, Achatz MI, Ashton-Prolla P et al (2010) Tumor protein 53 mutations and inherited cancer: beyond Li-Fraumeni syndrome. Curr Opin Oncol 22:64–69. doi:10.1097/CCO.0b013e328333bf00

    Article  CAS  PubMed  Google Scholar 

  13. Ruijs MWG, Verhoef S, Rookus MA et al (2010) TP53 germline mutation testing in 180 families suspected of Li-Fraumeni syndrome: mutation detection rate and relative frequency of cancers in different familial phenotypes. J Med Genet 47:421–428. doi:10.1136/jmg.2009.073429

    Article  CAS  PubMed  Google Scholar 

  14. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chou PY, Fasman GD (1974) Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. Biochemistry 13:211–222

    Article  CAS  PubMed  Google Scholar 

  16. Desmet F-O, Hamroun D, Lalande M et al (2009) Human splicing finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 37:e67. doi:10.1093/nar/gkp215

    Article  PubMed  PubMed Central  Google Scholar 

  17. de la Hoya M, Gutiérrez-Enríquez S, Velasco E et al (2006) Genomic rearrangements at the BRCA1 locus in Spanish families with breast/ovarian cancer. Clin Chem 52:1480–1485. doi:10.1373/clinchem.2006.070110

    Article  PubMed  Google Scholar 

  18. Gutiérrez-Enríquez S, de la Hoya M, Martínez-Bouzas C et al (2007) Screening for large rearrangements of the BRCA2 gene in Spanish families with breast/ovarian cancer. Breast Cancer Res Treat 103:103–107. doi:10.1007/s10549-006-9376-8

    Article  PubMed  Google Scholar 

  19. Mitchell G, Ballinger ML, Wong S, et al (2013) High frequency of germline TP53 mutations in a prospective adult-onset sarcoma cohort. PloS ONE 8:e69026. doi:10.1371/journal.pone.0069026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Surget S, Khoury MP, Bourdon J-C (2013) Uncovering the role of p53 splice variants in human malignancy: a clinical perspective. OncoTargets Ther 7:57–68. doi:10.2147/OTT.S53876

    Google Scholar 

  21. Petitjean A, Achatz MIW, Borresen-Dale AL et al (2007) TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26:2157–2165. doi:10.1038/sj.onc.1210302

    Article  CAS  PubMed  Google Scholar 

  22. Aramayo R, Sherman MB, Brownless K et al (2011) Quaternary structure of the specific p53-DNA complex reveals the mechanism of p53 mutant dominance. Nucleic Acids Res 39:8960–8971. doi:10.1093/nar/gkr386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Instituto de Salud Carlos III: ISCIII-RTICC-RD2012/0036/0006, CB-161200301 (Plan estatal de I + D + I 2013–2016, FEDER funds co-financed). We would like to thank Dr. José G. Gavilanes Franco (Complutense University of Madrid, Spain) for his assistance with the in silico characterization of the inframe deletion in p53. The authors also wish to thank the donors and the “Instituto de Investigación Sanitaria San Carlos” Biobank for the human specimens used in this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Trinidad Caldés or Vanesa García-Barberán.

Ethics declarations

Conflict of interest

We state no conflicts of interest. The funding bodies had no role in the study design, data collection and analyses, decision to publish or preparation of the manuscript.

Informed consent

Informed consents were obtained from all individual participants included in the study.

Research involving human participants

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Patricia Llovet and Francisco J. Illana have contributed equally to this study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llovet, P., Illana, F.J., Martín-Morales, L. et al. A novel TP53 germline inframe deletion identified in a Spanish series of Li-fraumeni syndrome suspected families. Familial Cancer 16, 567–575 (2017). https://doi.org/10.1007/s10689-017-9990-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-017-9990-0

Keywords

Navigation