Skip to main content
Log in

Functional ureogenesis and adaptation to ammonia metabolism in Indian freshwater air-breathing catfishes

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The Indian freshwater air-breathing catfishes Heteropneustes fossilis and Clarias batrachus are hardy and capable of living in derelict water bodies and tolerating temporary water deprivation. Several studies have been made on their ureogenic adaptations, ureogenic metabolic machinery, and regulation under different physiological and environmental conditions. Both species are potentially ureogenic teleosts expressing the complete repertoire of ornithine-urea cycle (OUC) enzymes, not only in hepatic tissue but also in certain non-hepatic tissues. This review compiles the information available on the peculiarities of their ureogenic machinery and the induction of ureogenesis during adaptation to various stressful conditions such as exposure to high environmental ammonia, water deprivation, highly alkaline environment, etc. The biochemical profile and pattern of physiological adaptations, suggesting an intermediary status of these fishes in the evolution of ureotely in vertebrates, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson PM (1976) A glutamine- and N-acetyl-L-glutamate- dependent carbamoyl phosphate synthetase activity in the teleost Micropterus salmoides. Comp Biochem Physiol 54B:261–263

    Google Scholar 

  • Anderson PM (1980) Glutamine- and N-acetyl glutamate-dependent carbamyl phosphate synthetase in elasmobranchs. Science 208:291–293

    Article  PubMed  CAS  Google Scholar 

  • Anderson PM (1995a) Urea cycle in fish: molecular and mitochondrial studies. In: Wood CM, Shuttleworth TJ (eds) Fish physiology, vol 14. Academic, New York, pp 57–83

    Google Scholar 

  • Anderson PM (1995b) Molecular aspects of carbamyl phosphate synthesis. In: Walsh PJ, Wright PA (eds) Nitrogen metabolism and excretion. CRC, Boca Raton, pp 33–50

    Google Scholar 

  • Anderson PM (2001) Urea and glutamine synthesis: environmental influences on nitrogen excretion. In: Wright PA, Anderson PM (eds) Fish physiology, vol 20. Academic, New York, pp 239–277

    Google Scholar 

  • Barimo JF, Steele SL, Wright PA, Walsh PJ (2004) Dogmas and controversies in the handling of nitrogenous wastes: ureotely and ammonia tolerance in early life stages of the gulf toadfish, Opsanus beta. J Exp Biol 207:2011–2020

    Article  PubMed  CAS  Google Scholar 

  • Brown GW Jr., Cohen PP (1960) Comparative biochemistry of urea synthesis-III. Activities of urea-cycle enzymes in various higher and lower vertebrates. Biochem J 75:82–91

    PubMed  CAS  Google Scholar 

  • Campbell JW (1991) Excretory nitrogen metabolism. In: Prosser CL (ed) Environmental and metabolic animal physiology. Wiley-Liss, New York, pp 277–324

    Google Scholar 

  • Campbell JW, Anderson PM (1991) Evolution of mitochondrial enzyme systems in fish: the mitochondrial synthesis of glutamine and citrulline. In: Hochachka PW, Mommsen TP (eds) Biochemistry and molecular biology of fishes, vol 1. Elsevier, Amsterdam, pp 43–76

    Google Scholar 

  • Chadwick TD, Wright PA (1999) Nitrogen excretion and expression of urea cycle enzymes in the Atlantic cod (Gadus morhua L.): a comparison of early life stages with adults. J Exp Biol 202:2653–2662

    PubMed  CAS  Google Scholar 

  • Chakravorty J, Saha N, Ratha BK (1989) A unique pattern of tissue distribution and sub-cellular localization of glutamine synthetase in a freshwater air-breathing teleost, Heteropneustes fossilis (Bloch). Biochem Int 19:519–527

    CAS  Google Scholar 

  • Chew SF, Wong MY, Tam WL, Ip YK (2003a) The snakehead Channa asiatica accumulates alanine during aerial exposure, but is incapable of sustaining locomotory activities on land through partial amino acid catabolism. J Exp Biol 206:693–704

    Article  PubMed  CAS  Google Scholar 

  • Chew SF, Ong TF, Ho L, Tam WL, Loong AM, Hiong KC, Wong WP, Ip YK (2003b) Urea synthesis in the African lungfish Protopterus dolloi -hepatic carbamoyl phosphate synthetase III and glutamine synthetase are up-regulated by 6 days of aerial exposure. J Exp Biol 206:3615–3624

    Article  PubMed  Google Scholar 

  • Cohen PP (1976) Evolutionary and comparative aspects of urea biosynthesis. In: Grisolia S, Baguena R, Mayor F (eds) The urea cycle. John Wiley and Sons, New York, pp 21–28

    Google Scholar 

  • Danulat E (1995) Biochemical-physiological adaptations of teleosts to highly alkaline, saline lakes. In: Hochachka PW, Mommsen TP (eds) Biochemistry and molecular biology of fishes, vol 5. Elsevier, Amsterdam, pp 229–249

    Google Scholar 

  • Dabrowska H, Wlasow T (1986) Sublethal effect of ammonia on certain biochemical and hematological indicators in common carp. Comp Biochem Physiol 83C:179–184

    CAS  Google Scholar 

  • Dêpêche J, Gilles R, Daufresne S, Chapello H (1979) Urea content and urea production via the ornithine-urea cycle pathway during the ontogenic development of two teleost fishes. Comp Biochem Physiol 63A:51–56

    Article  Google Scholar 

  • Dkhar J, Saha N, Ratha BK (1991) Ureogenesis in a freshwater teleost: an unusual sub-cellular localization of ornithine-urea cycle enzymes in the freshwater air-breathing teleost, Heteropneustes fossilis. Biochem Int 25:1061–1069

    PubMed  CAS  Google Scholar 

  • Frick NT, Wright PA (2002) Nitrogen metabolism and excretion in the mangrove killifish, Rivulus marmoratus. II. Significant ammonia volatilization in a teleost during air exposure. J Exp Biol 205:91–100

    PubMed  CAS  Google Scholar 

  • Goldstein L, Forster RP (1965) The role of uricolysis in the production of urea by fishes and other aquatic vertebrates. Comp Biochem Physiol 14:567–576

    Article  PubMed  CAS  Google Scholar 

  • Goldstein L, Janssens PA, Forster RP (1967) Lungfish Neoceratodus forsteri: activities of ornithine-urea cycle and enzymes. Science 157:316–317

    Article  PubMed  CAS  Google Scholar 

  • Graham JB (1997) Metabolic adaptation. In: Graham JB, Lee JH (eds) Air-breathing fishes: evolution, diversity and adaptation. Academic Press, San Diego, California, pp 223–240

  • Graham JB, Lee HJ (2004) Breathing air in air: in what ways might extant amphibious fish biology relates to prevailing concepts about early tetrapods, the evolution of vertebrate air-breathing, and vertebrate land transition? Physiol Biochem Zool 77:720–731

    Article  PubMed  Google Scholar 

  • Griffith RW (1991) Guppies, toadfish, lungfish, coelacanths and frogs: a scenario for the evolution of urea retention in fishes. Env Biol Fish 32:199–218

    Article  Google Scholar 

  • Helbig CC, Atkinson BG (1994) 3,5,3′-triiodothyronine-induced carbamyl phosphate synthetase gene expression is stabilized in the liver of Rana catesbeiana tadpoles during heat shock. J Biol Chem 269:11743–11750

    Google Scholar 

  • Hong J, Salo WL, Lusty CJ, Anderson PM (1994) Carbamyl phosphate synthetase III, an evolutionary intermediate in the transition between glutamine-dependent and ammonia-dependent carbamyl phosphate synthetase. J Mol Biol 243:131–140

    Article  PubMed  CAS  Google Scholar 

  • Huggins AK, Skutsch G, Baldwin E (1969) Ornithine-urea cycle enzymes in teleostean fish. Comp Biochem Physiol 28:587–602

    Article  CAS  Google Scholar 

  • Ip YK, Chew SF, Randall DJ (2001a) Ammonia toxicity, tolerance and excretion. In: Wright PA, Anderson PM (eds) Fish physiology, vol 20. Academic, New York, pp 109–148

    Google Scholar 

  • Ip YK, Chew SF, Leong IAW, Jin Y, Lim CB, Wu RSS (2001b) The sleeper Bostrichthys sinensis (Family Eleotridae) stores glutamine and reduces ammonia production during aerial exposure. J Comp Physiol 171B:357–367

    Google Scholar 

  • Ip YK, Lim CB, Chew SF, Wilson JM, Randall DJ (2001c) Partial amino acid catabolism leading to the formation of alanine in Periophthalmodon schlosseri (mudskipper): a strategy that facilitates the use of amino acids as an energy source during locomotory activity on land. J Exp Biol 204:1615–1624

    PubMed  CAS  Google Scholar 

  • Ip YK, Tay ASL, Lee KH, Chew SF (2004a) Strategies for surviving high concentrations of environmental ammonia in the swamp eel Monopterus albus. Physiol Biochem Zool 77:390–405

    Article  PubMed  CAS  Google Scholar 

  • Ip YK, Zubaidah RM, Liew PC, Loong AM, Hiong KC, Wong WP, Chew SF (2004b) African sharptooth catfish Clarias gariepinus does not detoxify ammonia to urea or amino acids but actively excretes ammonia during exposure to environmental ammonia. Physiol Biochem Zool 77:242–254

    Article  PubMed  CAS  Google Scholar 

  • Iwata K (1988) Nitrogen metabolism in the mudskipper, Periophthalmus cantonensis: changes in free amino acids and related compounds in various tissues under conditions of ammonia loading with special reference to its high ammonia tolerance. Comp Biochem Physiol 91A:499–508

    Article  CAS  Google Scholar 

  • Iwata K, Kajimura M, Sakamoto T (2000) Functional ureogenesis in the Gobiid fish, Mugilobius abei. J Exp Biol 203:3703–3715

    PubMed  CAS  Google Scholar 

  • Janssens PA, Cohen PP (1966) Ornithine-urea cycle enzymes in the African lungfish Protopterus aethiopicus. Science 152:358–359

    Article  PubMed  CAS  Google Scholar 

  • Jenkinson CP, Grody WW, Cederbaum SD (1996) Comparative properties of arginases. Comp Biochem Physiol 114B:107–132

    CAS  Google Scholar 

  • Jhingran VG (1983) Fish and fisheries of India, 2nd edn. Hindustan Publishing Co., New Delhi

    Google Scholar 

  • Jones ME (1980) Pyrimidine nucleotide biosynthesis in animals: genes, enzymes, and regulation of UMP biosynthesis. Ann Rev Biochem 49:253–280

    Article  PubMed  CAS  Google Scholar 

  • Jow LY, Chew SF, Lim CB, Anderson PM, Ip YK (1999) The marble goby Oxyeleotris marmoratus activates hepatic glutamine synthetase and detoxifies ammonia to glutamine during air exposure. J Exp Biol 202:237–245

    PubMed  CAS  Google Scholar 

  • Kharbuli ZY, Datta S, Biswas K, Sarma D, Saha N (2006) Expression of ornithine-urea cycle enzymes in early life stages of air-breathing walking catfish Clarias batrachus and induction of ureogenesis under hyper-ammonia stress. Comp Biochem Physiol 143B:44–53

    CAS  Google Scholar 

  • Korte JJ, Salo WL, Cabrera VM, Wright PA, Felskie AK, Anderson PM (1997) Expression of carbamyl phosphate synthetase III mRNA during the early stages of development and in muscle of adult rainbow trout (Oncorhynchus mykiss). J Biol Chem 272:6270–6277

    Article  PubMed  CAS  Google Scholar 

  • Krebs HA, Henseleit K (1932) Studies on urea formation in animal organism. Hoppe-Sylers Z Physiol Chem 210:33–66

    CAS  Google Scholar 

  • Lindley TE, Scheiderer CL, Walsh PJ, Wood CM, Bergman HL, Bergman AL, Laurent P, Wilson P, Anderson PM (1999) Muscle as the primary site of urea cycle enzyme activity in an alkaline lake-adapted tilapia, Oreochromisalcalicus grahami. J Biol Chem 274:29858–29861

    Article  PubMed  CAS  Google Scholar 

  • Long JA, Gordon MS (2004) The greatest step in vertebrate history: a paleobiological review of the fish-tetrapod transition. Physiol Biochem Zool 77:700–719

    Article  PubMed  Google Scholar 

  • Loong AM, Hiong KC, Lee SM, Wong WP, Chew SF, Ip YK (2005) Ornithine-urea cycle and urea synthesis in African lungfishes, Protopterus aethiopicus and Protopterus annectens, exposed to terrestrial conditions for six days. J Exp Zool 303A:354–365

    Article  CAS  Google Scholar 

  • Meijer AJ, Lamers WH, Chamuleau RAFM (1990) Nitrogen metabolism and ornithine cycle function. Physiol Rev 70:701–748

    PubMed  CAS  Google Scholar 

  • Mommsen TP, Walsh PJ (1989) Evolution of urea synthesis in vertebrates: the piscine connection. Science 243:72–75

    Article  PubMed  CAS  Google Scholar 

  • Mommsen TP, Walsh PJ (1991) Urea synthesis in fishes: evolutionary and biochemical perspectives. In: Hochachka PW, Mommsen TP (eds) Biochemistry and molecular biology of fishes, vol 1. Elsevier, Amsterdam, pp 137–163

    Google Scholar 

  • Munshi JSD, Hughes GM (1992) Air-breathing fishes: their structure and life history. Oxford Publication and IBH, New Delhi

    Google Scholar 

  • Pang PKT, Griffith RW, Atz JW (1977) Osmoregulation in elasmobranchs. Amer Zool 17:365–377

    CAS  Google Scholar 

  • Paulus H (1983) The evolutionary history of the ornithine cycle as a determinant of its structure and regulation. Curr Top Cell Regul 22:177–200

    PubMed  CAS  Google Scholar 

  • Peng KW, Chew SF, Lim CB, Kuah SSL, Kok WK, Ip YK (1998) The mudskippers Periophthalmus schlosseri and Boleophthalmus boddaerti can tolerate environmental NH3 concentrations of 446 and 36 μM, respectively. Fish Physiol Biochem 19:59–69

    Article  CAS  Google Scholar 

  • Randall DJ, Wood CM, Perry SF, Bergman H, Maloiy GMO, Mommsen TP, Wright PA (1989) Urea excretion as a strategy for survival in a fish living in a very alkaline environment. Nature 337:165–166

    Article  PubMed  CAS  Google Scholar 

  • Randall DJ, Wilson JM, Peng KW, Kok TWK, Kuah SSL, Chew SF, Lam TJ, Ip YK (1999) The mudskipper Periophthalmodon schlosseri, actively transports NH +4 against a concentration gradient. Am J Physiol 46:R1562–R1567

    Google Scholar 

  • Ratha BK, Saha N, Rana RK, Choudhury B (1995) Evolutionary significance of metabolic detoxification of ammonia to urea in an ammoniotelic freshwater teleost, Heteropneustes fossilis during temporary water deprivation. Evol Biol 8&9:107–117

    Google Scholar 

  • Rao GR, Tripathi SD, Sahu AK (1994) Breeding and seed production of the Asian catfish Clarias batrachus (Linnaeus). In: Manual Series, vol 3. Central Institute of Freshwater Aquaculture, Bhubaneswar, India, pp 1–47

  • Read LJ (1971) The presence of high ornithine-urea cycle enzymes activity in the teleost Opsanus tau. Comp Biochem Physiol 39B:409–419

    Google Scholar 

  • Rozemeijer MJC, Plaut I (1993) Regulation of nitrogen excretion of the amphibious blenniidae Alticus kirki (Guenther, 1868) during emersion and immersion. Comp Biochem Physiol 104A:57–62

    Article  CAS  Google Scholar 

  • Saha N, Ratha BK (1986) Effect of ammonia stress on ureogenesis in a freshwater air-breathing teleost, Heteropneustes fossilis. Contemp Themes Biochem 6:342–343

    Google Scholar 

  • Saha N, Ratha BK (1987) Active ureogenesis in a freshwater air-breathing teleost, Heteropneustes fossilis. J Exp Zool 241:137–141

    Article  CAS  Google Scholar 

  • Saha N, Ratha BK (1989) Comparative study of ureogenesis in freshwater, air-breathing teleosts. J Exp Zool 252:1–8

    Article  Google Scholar 

  • Saha N, Ratha BK (1990) Alterations in excretion pattern of ammonia and urea in a freshwater air-breathing teleost, Heteropneustes fossilis (Bloch) during hyper-ammonia stress. Indian J Exp Biol 28:597–599

    CAS  Google Scholar 

  • Saha N, Ratha BK (1994) Induction of ornithine-urea cycle in a freshwater teleost, Heteropneustes fossilis, exposed to high concentrations of ammonium chloride. Comp Biochem Physiol 108B:315–325

    CAS  Google Scholar 

  • Saha N, Ratha BK (1998) Ureogenesis in Indian air-breathing teleosts: adaptation to environmental constraints. Comp Biochem Physiol 120A:195–208

    CAS  Google Scholar 

  • Saha N, Das L (1999) Stimulation of ureogenesis in the perfused liver of an Indian air-breathing catfish, Clarias batrachus, infused with different concentrations of ammonium chloride. Fish Physiol Biochem 21:303–311

    Article  CAS  Google Scholar 

  • Saha N, Chakravory C, Ratha BK (1988) Diurnal variation in renal and extra-renal excretion of ammonia-N and urea-N in a freshwater air-breathing teleost, Heteropneustes fossilis (Bloch). Proc Indian Acad Sci (Anim Sci) 97:529–537

    Article  Google Scholar 

  • Saha N, Dkhar J, Ratha BK (1995) Induction of ureogenesis in perfused liver of a freshwater teleost, Heteropneustes fossilis, infused with different concentrations of ammonium chloride. Comp Biochem Physiol 112B:733–741

    CAS  Google Scholar 

  • Saha N, Dkhar J, Anderson PM, Ratha BK (1997) Carbamyl phosphate synthetases in an air-breathing teleost, Heteropneustes fossilis. Comp Biochem Physiol 116B:57–63

    CAS  Google Scholar 

  • Saha N, Das L, Dutta S (1999) Types of carbamyl phosphate synthetases and subcellular localization of urea cycle and related enzymes in air-breathing walking catfish, Clarias batrachus. J Exp Zool 283:121–130

    Article  CAS  Google Scholar 

  • Saha N, Dutta S, Häussinger D (2000) Changes in free amino acid synthesis in the perfused liver of an air-breathing catfish, Clarias batrachus infused with ammonium chloride: a strategy to adapt under hyperammonia stress. J Exp Zool 286:13–23

    Article  PubMed  CAS  Google Scholar 

  • Saha N, Das L, Dutta S, Goswami UC (2001) Role of ureogenesis in the mud-dwelled singhi catfish (Heteropneustes fossilis) under condition of water shortage. Comp Biochem Physiol 128B:137–146

    Google Scholar 

  • Saha N, Dutta S, Bhattacharjee A (2002a) Role of amino acid metabolism in an air-breathing catfish, Clarias batrachus in response to exposure to a high concentration of exogenous ammonia. Comp Biochem Physiol 133B:235–250

    CAS  Google Scholar 

  • Saha N, Kharbuli ZY, Bhattacharjee A, Goswami C, Häussinger D (2002b) Effect of alkalinity (pH 10) on ureogenesis in the air-breathing walking catfish, Clarias batrachus. Comp Biochem Physiol 132A:353–364

    CAS  Google Scholar 

  • Saha N, Datta S, Biswas K, Kharbuli ZY (2003) Role of ureogenesis in tackling problems of ammonia toxicity during exposure to higher ambient ammonia in the air-breathing walking catfish Clarias batrachus. J Bioscience 28:733–742

    Article  CAS  Google Scholar 

  • Saha N, Datta S, Kharbuli ZY, Biswas K, Bhattacharjee A (2007) Air-breathing catfish, Clarias batrachus upregulates glutamine synthetase and carbamyl phosphate synthetase III during exposure to high external ammonia. Comp Biochem Physiol 147B:520–530

    CAS  Google Scholar 

  • Sayer MDJ, Davenport J (1991) Amphibious fish: why do they leave water? Rev Fish Biol Fish 1:159–181

    Article  Google Scholar 

  • Smith HW (1929) The excretion of ammonia and urea by the gills of fish. J Biol Chem 82:727–742

    Google Scholar 

  • Tay ASL, Chew SF, Ip YK (2003) The swamp eel Monopterus albus reduces endogenous ammonia production and detoxifies ammonia to glutamine during 144 h of aerial exposure. J Exp Biol 206:2473–2486

    Article  PubMed  CAS  Google Scholar 

  • Terjesen BF, Rønnestad I, Norberg B, Anderson PM (2000) Detection and basic properties of carbamyl phosphate synthetase III during teleosts ontogeny: a case study in the Atlantic halibut (Hippglossus hippoglossus L.). Comp Biochem Physiol 126B:521–535

    CAS  Google Scholar 

  • Terjesen BF, Chadwick TD, Verreth JAJ, Rønnestad I, Wright PA (2001) Pathways of urea production during early life of an air-breathing teleost, the African catfish, Clarias gariepinus (Burchell 1822). J Exp Biol 204:2155–2165

    PubMed  CAS  Google Scholar 

  • Tsui TKN, Randall DJ, Chew SF, Jin Y, Wilson JM, Ip YK (2002) Accumulation of ammonia in the body and NH3 volatilization from alkaline regions of the body surface during ammonia loading and exposure to air in the weather loach Misgurnus anguillicaudatus. J Exp Biol 205:651–659

    PubMed  CAS  Google Scholar 

  • Tsui TKN, Randall DJ, Hanson J, Farrel AP, Chew SF, Ip YK (2004) Dogmas and controversies in the handling of nitrogenous wastes: ammonia tolerance in the oriental weatherloach Misgurnus anguillicaudatus. J Exp Biol 207:1977–1983

    Article  PubMed  CAS  Google Scholar 

  • Walsh PJ (1997) Evolution and regulation of urea cycle synthesis and ureotely in (Batrachoid) fishes. Annu Rev Physiol 59:299–323

    Article  PubMed  CAS  Google Scholar 

  • Walsh PJ (1998) Nitrogen excretion and metabolism. In: Evans DH (ed) The physiology of fishes, 2nd edn. CRC, Boca Raton, pp 199–214

    Google Scholar 

  • Walsh JP, Danulat E, Mommsen TP (1990) Variation in urea excretion in the gulf toadfish Opsanus beta. Mar Biol 106:323–328

    Article  CAS  Google Scholar 

  • Walsh PJ, Tucker BC, Hopkins TE (1994) Effects of confinement and crowding on ureogenesis in the gulf toadfish Opsanus beta. J Exp Biol 191:195–206

    PubMed  CAS  Google Scholar 

  • Walsh PJ, Milligan CL (1995) Effects of feeding and confinement on nitrogen metabolism and excretion in the gulf toadfish Opsanus beta. J Exp Biol 198:1559–1566

    PubMed  CAS  Google Scholar 

  • Walsh PJ, Mommsen TP (2001) Evolutionary considerations of nitrogen metabolism and excretion. In: Wright PA, Anderson PM (eds) Fish physiology, vol 20. Academic, New York, pp 1–30

    Google Scholar 

  • Wilkie MP (1997) Mechanism of ammonia excretion across fish gills. Comp Biochem Physiol 118A:39–50

    Article  CAS  Google Scholar 

  • Wilkie MP, Wood CM (1996) The adaptations of fish to extremely alkaline environments. Comp Biochem Physiol 113B:665–673

    CAS  Google Scholar 

  • Wood CM (1993) Ammonia and urea metabolism and excretion. In: Evans DH (ed) The physiology of fishes. CRC, Boca Raton, pp 379–425

    Google Scholar 

  • Wright PA (1993) Nitrogen excretion and enzyme pathways for ureogenesis in freshwater tilapia (Oreochromis niloticus). Physiol Zool 66:881–901

    CAS  Google Scholar 

  • Wright PA (1995) Nitrogen excretion: three end products, many physiological roles. J Exp Biol 198:273–281

    PubMed  CAS  Google Scholar 

  • Wright PA, Fyhn HJ (2001) Ontogeny of nitrogen metabolism and excretion. In: Wright PA, Anderson PM (eds) Fish physiology, vol 20. Academic, New York, pp 149–200

    Google Scholar 

  • Wright PA, Felskie A, Anderson PM (1995) Induction of ornithine-urea cycle enzymes and nitrogen metabolism and excretion in rainbow trout (Oncorhynchus mykiss) during early life stages. J Exp Biol 198:127–135

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was partly supported by research grants awarded to the authors by the Department of Biotechnology and Department of Science & Technology, Govt. of India, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. K. Ratha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saha, N., Ratha, B.K. Functional ureogenesis and adaptation to ammonia metabolism in Indian freshwater air-breathing catfishes. Fish Physiol Biochem 33, 283–295 (2007). https://doi.org/10.1007/s10695-007-9172-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-007-9172-3

Keywords

Navigation