Skip to main content
Log in

Effects of dietary arachidonic acid on cortisol production and gene expression in stress response in Senegalese sole (Solea senegalensis) post-larvae

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Dietary fatty acids, particularly arachidonic acid (ARA), affect cortisol and may influence the expression of genes involved in stress response in fish. The involvement of ARA on stress, lipid, and eicosanoid metabolism genes, in Senegalese sole, was tested. Post-larvae were fed Artemia presenting graded ARA levels (0.1, 0.4, 0.8, 1.7, and 2.3 %, dry matter basis), from 22 to 35 days after hatch. Whole-body cortisol levels were determined, before and 3 h after a 2 min air exposure, as well as the expression of phospholipase A2 (PLA 2 ), cyclooxygenase-2 (COX-2), steroidogenic acute regulatory protein (StAR), glucocorticoid receptors (GRs), phosphoenolpyruvate carboxykinase (PEPCK), and peroxisome proliferator-activated receptor alpha (PPARα). Relative growth rate (6.0–7.8 % day−1) and survival at the end of the experiment (91–96 %) and after stress (100 %) were unaffected. Fish reflected dietary ARA content and post-stress cortisol increased with ARA supply up to 1.7 %, whereas 2.3 % ARA seemed to enhance basal cortisol slightly and alter the response to stress. Results suggested that elevating StAR transcription might not be necessary for a short-term response to acute stress. Basal cortisol and PLA 2 expression were strongly correlated, indicating a potential role for this enzyme in steroidogenesis. Under basal conditions, larval ARA was associated with GR1 expression, whereas the glucocorticoid responsive gene PEPCK was strongly related with cortisol but not GR1 mRNA levels, suggesting the latter might not reflect the amount of GR1 protein in sole. Furthermore, a possible role for PPARα in the expression of PEPCK following acute stress is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

LC-PUFA:

Long-chain polyunsaturated fatty acids

SAFA:

Saturated fatty acids

MUFA:

Monounsaturated fatty acids

ARA:

Arachidonic acid

EPA:

Eicosapentaenoic acid

DHA:

Docosahexaenoic acid

HPI:

Hypothalamus–pituitary–interrenal

PLA2 :

Phospholipase A2

COX-2:

Cyclooxygenase-2

PPARα:

Peroxisome proliferator-activated receptor alpha

StAR:

Steroidogenic acute regulatory protein

GR:

Glucocorticoid receptor

PEPCK:

Phosphoenolpyruvate carboxykinase

RGR:

Relative growth rate

References

  • Aluru N, Vijayan MM (2007) Hepatic transcriptome response to glucocorticoid receptor activation in rainbow trout. Physiol Genomics 31(3):483–491

    Article  PubMed  CAS  Google Scholar 

  • Aluru N, Vijayan MM (2009) Stress transcriptomics in fish: A role for genomic cortisol signaling. Gen Comp Endocrinol 164 (2–3, Sp. Iss. SI):142–150

    Google Scholar 

  • Alves Martins D, Engrola S, Morais S, Bandarra N, Coutinho J, Yúfera M, Conceição LEC (2011a) Cortisol response to air exposure in Solea senegalensis post-larvae is affected by dietary arachidonic acid-to-eicosapentaenoic acid ratio. Fish Physiol Biochem 37(4):733–743

    Article  CAS  Google Scholar 

  • Alves Martins D, Rocha F, Martínez-Rodríguez G, Bell G, Morais S, Castanheira F, Bandarra N, Coutinho J, Yúfera M, Conceição LEC (2011b) Teleost fish larvae adapt to dietary arachidonic acid supply through modulation of the expression of lipid metabolism and stress response genes. Br J Nutr 108:864–874

    Article  PubMed  Google Scholar 

  • Andersen CY (2002) Possible new mechanism of cortisol action in female reproductive organs: physiological implications of the free hormone hypothesis. J Endocrinol 173:211–217

    Article  PubMed  CAS  Google Scholar 

  • Aragão C, Corte-Real J, Costas B, Dinis MT, Conceição LEC (2008) Stress response and changes in amino acid requirements in Senegalese sole (Solea senegalensis Kaup (1858). Amino Acids 34(1):143–148

    Article  PubMed  Google Scholar 

  • Aragão C, Costas B, Vargas-Chacoff L, Ruiz-Jarabo I, Dinis MT, Mancera JM, Conceição LEC (2010) Changes in plasma amino acid levels in a euryhaline fish exposed to different environmental salinities. Amino Acids 38(1):311–317

    Article  PubMed  Google Scholar 

  • Barry TP, Unwin MJ, Malison JA, Quinn TP (2001) Free and total cortisol levels in semelparous and iteroparous chinook salmon. J Fish Biol 59(6):1673–1676

    Article  CAS  Google Scholar 

  • Barton BA, Iwama GK (1991) Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteriods. Annu Rev Fish Dis 1:3–26

    Article  Google Scholar 

  • Bell MV, Henderson RJ, Sargent JR (1986) The role of polyunsaturated fatty acids in fish. Comp Biochem Phys B 83:711–719

    CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    Article  PubMed  CAS  Google Scholar 

  • Brien TG (1980) Free cortisol in human plasma. Horm Metab Res 12:643–650

    Article  PubMed  CAS  Google Scholar 

  • Cassuto H, Aran A, Cohen H, Eisenberger CL, Reshef L (1999) Repression and activation of transcription of phosphoenolpyruvate carboxykinase gene during liver development. FEBS Lett 457(3):441–444

    Article  PubMed  CAS  Google Scholar 

  • Castillo J, Castellana B, Acerete L, Planas JV, Goetz FW, Mackenzie S, Tort L (2008) Stress-induced regulation of steroidogenic acute regulatory protein expression in head kidney of Gilthead seabream (Sparus aurata). J Endocrinol 196(2):313–322

    Article  PubMed  CAS  Google Scholar 

  • Clarke SD (2004) The multi-dimensional regulation of gene expression by fatty acids: polyunsaturated fats as nutrient sensors. Curr Opin Lipidol 15(1):13–18

    Article  PubMed  CAS  Google Scholar 

  • Conceição LEC, Ribeiro L, Engrola S, Aragão C, Morais S, Lacuisse M, Soares F, Dinis MT (2007) Nutritional physiology during development of Senegalese sole (Solea senegalensis). Aquaculture 268(1):64–81

    Article  Google Scholar 

  • Costas B, Aragão C, Mancera JM, Dinis MT, Conceição LEC (2008) High stocking density induces crowding stress and affects amino acid metabolism in Senegalese sole Solea senegalensis (Kaup 1858) juveniles. Aquacult Res 39(1):1–9

    Article  CAS  Google Scholar 

  • Costas B, Aragão C, Ruiz-Jarabo I, Vargas-Chacoff L, Arjona FJ, Dinis MT, Mancera JM, Conceição LEC (2011a) Feed deprivation in Senegalese sole (Solea senegalensis Kaup, 1858) juveniles: effects on blood plasma metabolites and free amino acid levels. Fish Physiol Biochem 37:495–504

    Article  PubMed  CAS  Google Scholar 

  • Costas B, Conceição LEC, Aragão C, Martos JA, Ruiz-Jarabo I, Mancera JM, Afonso A (2011b) Physiological responses of Senegalese sole (Solea senegalensis Kaup, 1858) after stress challenge: effects on non-specific immune parameters, plasma free amino acids and energy metabolism. Aquaculture 316:68–76

    Article  CAS  Google Scholar 

  • Dâmaso-Rodrigues ML, Pousão-Ferreira P, Ribeiro L, Coutinho J, Bandarra NM, Gavaia PJ, Narciso L, Morais S (2010) Lack of essential fatty acids in live feed during larval and post larval rearing: effect on the performance of juvenile Solea senegalensis. Aquacult Int 18(5):741–757

    Article  Google Scholar 

  • Duplus E, Forest C (2002) Is there a single mechanism for fatty acid regulation of gene transcription? Biochem Pharmacol 64(5–6):893–901

    Article  PubMed  CAS  Google Scholar 

  • Fast MD, Hosoya S, Johnson SC, Afonso LOB (2008) Cortisol response and immune-related effects of Atlantic salmon (Salmo salar Linnaeus) subjected to short- and long-term stress. Fish Shellfish Immun 24(2):194–204

    Article  CAS  Google Scholar 

  • Ganga R, Tort L, Acerete L, Montero D, Izquierdo MS (2006) Modulation of ACTH-induced cortisol release by polyunsaturated fatty acids in interrenal cells from gilthead seabream Sparus aurata. J Endocrinol 190(1):39–45

    Article  PubMed  CAS  Google Scholar 

  • Ganga R, Bell JG, Montero D, Atalah E, Vraskou Y, Tort L, Fernandez A, Izquierdo MS (2011) Adrenocorticotrophic hormone-stimulated cortisol release by the head kidney inter-renal tissue from sea bream (Sparus aurata) fed with linseed oil and soyabean oil. Br J Nutr 105(2):238–247

    Article  PubMed  CAS  Google Scholar 

  • Geslin M, Auperin B (2004) Relationship between changes in mRNAs of the genes encoding steroidogenic acute regulatory protein and P450 cholesterol side chain cleavage in head kidney and plasma levels of cortisol in response to different kinds of acute stress in the rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 135(1):70–80

    Article  PubMed  CAS  Google Scholar 

  • Harel M, Gavasso S, Leshin J, Gubernatis A, Place AR (2001) The effect of tissue docosahexaenoic and arachidonic acids levels on hypersaline tolerance and leucocyte composition in striped bass (Morone saxatilis) larvae. Fish Physiol Biochem 24(2):113–123

    Article  CAS  Google Scholar 

  • Hori TS, Gamperl AK, Hastings CE, Voort GEV, Robinson JAB, Johnson SC, Afonso LOB (2012a) Inter-individual and -family differences in the cortisol responsiveness of Atlantic cod (Gadus morhua). Aquaculture 324–325:165–173

    Article  Google Scholar 

  • Hori TS, Rise ML, Johnson SC, Afonso LOB, Gamperl AK (2012b) The mRNA expression of cortisol axis related genes differs in Atlantic cod (Gadus morhua) categorized as high or low responders. Gen Comp Endocrinol 175:311–320

    Article  PubMed  CAS  Google Scholar 

  • Hosoya S, Johnson SC, Iwama GK, Gamperl AK, Afonso LOB (2007) Changes in free and total plasma cortisol levels in juvenile haddock (Melanogrammus aeglefinus) exposed to long-term handling stress. Comp Biochem Phys A 146:78–86

    Article  CAS  Google Scholar 

  • Hosoya S, Kaneko T, Suzuki Y, Hino A (2008) Individual variations in behavior and free cortisol responses to acute stress in tiger pufferfish Takifugu rubripes. Fish Sci 74:755–763

    Article  CAS  Google Scholar 

  • Hughes-Fulford M, Tjandrawinata RR, Li C-F, Sayyah S (2005) Arachidonic acid, an omega-6 fatty acid, induces cytoplasmic phospholipase A2 in prostate carcinoma cells. Carcinogenesis 26(9):1520–1526

    Article  PubMed  CAS  Google Scholar 

  • Jia Y, Turek JJ (2005) Altered NF-kappa B gene expression and collagen formation induced by polyunsaturated fatty acids. J Nutr Biochem 16(8):500–506

    Article  PubMed  CAS  Google Scholar 

  • Johansen IB, Sandvik GK, Nilsson GE, Bakken M, Overli O (2011) Cortisol receptor expression differs in the brains of rainbow trout selected for divergent cortisol responses. Comp Biochem Phys D 6(2):126–132

    Google Scholar 

  • Jump DB, Clarke SD (1999) Regulation of gene expression by dietary fat. Annu Rev Nutr 19:63–90

    Article  PubMed  CAS  Google Scholar 

  • Junzo K, Akiko T, Naoki M, Noriaki K, Koji Y, Shuji H (1987) Modulation of brain progestin and glucocorticoid receptors by unsaturated fatty acid and phospholipid. J Steroid Biochem 27(4–6):641–648

    Article  Google Scholar 

  • Kato J (1989) Arachidonic acid as a possible modulator of estrogen, progestin, androgen, and glucocorticoid receptors in the central and peripheral tissues. J Steroid Biochem 34:219–227

    Article  PubMed  CAS  Google Scholar 

  • Koven W, Van Anholt R, Lutzky S, Ben Atia I, Nixon O, Ron B, Tandler A (2003) The effect of dietary arachidonic acid on growth, survival, and cortisol levels in different-age gilthead seabream larvae (Sparus auratus) exposed to handling or daily salinity change. Aquaculture 228:307–320

    Article  CAS  Google Scholar 

  • Kowalewski MP, Dyson MT, Manna PR, Stocco DM (2009) Involvement of peroxisome proliferator-activated receptor gamma in gonadal steroidogenesis and steroidogenic acute regulatory protein expression. Reprod Fertil Dev 21(7):909–922

    Article  PubMed  CAS  Google Scholar 

  • Lee PC, Struve M (1992) Unsaturated fatty acids inhibit glucocorticoid receptor-binding of trout hepatic cytosol. Comp Biochem Phys B 102(4):707–711

    CAS  Google Scholar 

  • Lepage G, Roy CC (1986) Direct transesterification of all classes of lipids in a one-step reaction. J Lipid Res 27(1):114–120

    PubMed  CAS  Google Scholar 

  • Lin Q, Ruuska SE, Shaw NS, Dong D, Noy N (1999) Ligand selectivity of the peroxisome proliferator-activated receptor α. Biochemistry (Mosc) 38(1):185–190

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta]CT method. Methods 25(4):402–408

    Article  PubMed  CAS  Google Scholar 

  • Lund I, Steenfeldt SJ (2011) The effects of dietary long-chain essential fatty acids on growth and stress tolerance in pikeperch larvae (Sander lucioperca L.). Aquacult Nutr 17(2):191–199

    Article  CAS  Google Scholar 

  • Maule AG, Schreck CB (1991) Stress and cortisol treatment changed affinity and number of glucocorticoid receptors in leukocytes and gill of coho salmon. Gen Comp Endocrinol 84(1):83–93

    Article  PubMed  CAS  Google Scholar 

  • McKenzie DJ (2005) Effects of dietary fatty acids on the physiology of environmental adaptation in fish. In: Starck JM, Wang T (eds) Physiological and Ecological Adaptations to Feeding in Vertebrates. Science Publishers, Enfield, pp 363–388

    Google Scholar 

  • Meves H (2008) Arachidonic acid and ion channels: an update. Br J Pharmacol 155(1):4–16

    Article  PubMed  CAS  Google Scholar 

  • Mommsen TP, Vijayan MM, Moon TW (1999) Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev Fish Biol Fish 9(3):211–268

    Article  Google Scholar 

  • Nematollahi MA, van Pelt-Heerschap H, Komen J (2009) Transcript levels of five enzymes involved in cortisol synthesis and regulation during the stress response in common carp: relationship with cortisol. Gen Comp Endocrinol 164(1):85–90

    Article  PubMed  CAS  Google Scholar 

  • Oxley A, Jolly C, Eide T, Jordal AEO, Svardal A, Olsen RE (2010) The combined impact of plant-derived dietary ingredients and acute stress on the intestinal arachidonic acid cascade in Atlantic salmon (Salmo salar). Br J Nutr 103(6):851–861

    Article  PubMed  CAS  Google Scholar 

  • Pavlikova N, Kortner TM, Arukwe A (2010) Modulation of acute steroidogenesis, peroxisome proliferator-activated receptors and CYP3A/PXR in salmon interrenal tissues by tributyltin and the second messenger activator, forskolin. Chem-Biol Interact 185:119–127

    Article  PubMed  CAS  Google Scholar 

  • Ranhotra HS, Sharma R (2004) Polyunsaturated fatty acids inhibit mouse hepatic glucocorticoid receptor activation in vitro. Indian J Biochem Biophys 41(5):246–249

    PubMed  CAS  Google Scholar 

  • Ricker WE (1958) Handbook of computations for biological statistics of fish populations. Can J Fish Aquat Sci 119:1–300

    Google Scholar 

  • Rosewicz S, McDonald AR, Maddux BA, Goldfine ID, Miesfeld RL, Logsdon CD (1988) Mechanism of glucocorticoid receptor downregulation by glucocorticoids. J Biol Chem 263(6):2581–2584

    PubMed  CAS  Google Scholar 

  • Salas-Leiton E, Coste O, Asensio E, Infante C, Cañavate JP, Manchado M (2012) Dexamethasone modulates expression of genes involved in the innate immune system, growth and stress and increases susceptibility to bacterial disease in Senegalese sole (Solea senegalensis Kaup 1858). Fish Shellfish Immun 32(5):769–778

    Article  CAS  Google Scholar 

  • Sathiyaa R, Vijayan MM (2003) Autoregulation of glucocorticoid receptor by cortisol in rainbow trout hepatocytes. Am J Physiol—Cell Ph 284:C1508–C1515

    Article  CAS  Google Scholar 

  • Schievella AR, Regier MK, Smith WL, Lin LL (1995) Calcium-mediated translocation of cytosolic phospholipase A2 to the nuclear envelope and endoplasmic reticulum. J Biol Chem 270:30749–30754

    Article  PubMed  CAS  Google Scholar 

  • Shrimpton JM, Mccormick SD (1999) Responsiveness of gill Na +/K + -ATPase to cortisol is related to gill corticosteroid receptor concentration in juvenile rainbow trout. J Exp Biol 202:987–995

    PubMed  CAS  Google Scholar 

  • Shrimpton JM, Randall DJ (1994) Downregulation of corticosteroid receptors in gills of coho salmon due to stress and cortisol treatment. Am J Physiol–Reg I 267(2):R432–R438

    CAS  Google Scholar 

  • Silva PIM, Martins CIM, Engrola S, Marino G, Øverli Ø, Conceição LEC (2010) Individual differences in cortisol levels and behaviour of Senegalese sole (Solea senegalensis) juveniles: evidences for coping styles. Appl Anim Behav Sci 124:75–81

    Article  Google Scholar 

  • Stocco DM, Wang XJ, Jo Y, Manna PR (2005) Multiple signalling pathways regulating steroidogenesis and steroidogenic acute regulatory protein expression: more complicated than we thought. Mol Endocrinol 19(11):2647–2659

    Article  PubMed  CAS  Google Scholar 

  • Striggow F, Ehrlich BE (1997) Regulation of intracellular calcium release channel function by arachidonic acid and leukotriene B-4. Biochem Biophys Res Commun 237(2):413–418

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Sakamoto T, Hyodo S, Shepherd BS, Kaneko T, Grau EG (2006) Expression of glucocorticoid receptor in the intestine of a euryhaline teleost, the Mozambique tilapia (Oreochromis mossambicus): effect of seawater exposure and cortisol treatment. Life Sci 78:2329–2335

    Article  PubMed  CAS  Google Scholar 

  • Tocher DR (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 11(2):107–184

    Article  CAS  Google Scholar 

  • Vagner M, Santigosa E (2011) Characterization and modulation of gene expression and enzymatic activity of delta-6 desaturase in teleosts: a review. Aquaculture 315:131–143

    Article  CAS  Google Scholar 

  • Van Anholt RD, Koven WM, Lutzky S, Wendelaar Bonga SE (2004) Dietary supplementation with arachidonic acid alters the stress response of gilthead seabream (Sparus aurata) larvae. Aquaculture 238:1–4

    Article  Google Scholar 

  • Van Anholt RD, Spanings FAT, Nixon O, Wendelaar Bonga SE, Koven WM (2012) The effects of arachidonic acid on the endocrine and osmoregulatory response of tilapia (Oreochromis mossambicus) acclimated to seawater and subjected to confinement stress. Fish Physiol Biochem 38(3):703–713

    Article  PubMed  CAS  Google Scholar 

  • Vijayan MM, Raptis S, Sathiyaa R (2003) Cortisol treatment affects glucocorticoid receptor and glucocorticoid-responsive genes in the liver of rainbow trout. Gen Comp Endocrinol 132(2):256–263. doi:10.1016/s0016-6480(03)00092-3

    Article  PubMed  CAS  Google Scholar 

  • Villalta M, Estévez A, Bransden MP (2005a) Arachidonic acid enriched live prey induces albinism in Senegal sole (Solea senegalensis) larvae. Aquaculture 245:193–209

    Article  CAS  Google Scholar 

  • Villalta M, Estévez A, Bransden MP, Bell JG (2005b) The effect of graded concentrations of dietary DHA on growth, survival and tissue fatty acid profile of Senegal sole (Solea senegalensis) larvae during the Artemia feeding period. Aquaculture 249:353–365

    Article  CAS  Google Scholar 

  • Villalta M, Estévez A, Bransden MP, Bell JG (2008a) Arachidonic acid, arachidonic/eicosapentaenoic acid ratio, stearidonic acid and eicosanoids are involved in dietary-induced albinism in Senegal sole (Solea senegalensis). Aquacult Nutr 14:120–128

    Article  CAS  Google Scholar 

  • Villalta M, Estévez A, Bransden MP, Bell JG (2008b) Effects of dietary eicosapentaenoic acid on growth, survival, pigmentation and fatty acid composition in Senegal sole (Solea senegalensis) larvae during the Artemia feeding period. Aquacult Nutr 14(3):232–241

    Article  CAS  Google Scholar 

  • Wales NAM (1988) Hormone studies in Myxine glutinosa—effects of the eicosanoids arachidonic-acid, prostaglandin-E1, prostaglandin-E2, prostaglandin-A2, prostaglandin-F2, thromboxane B2 and of indomethacin on plasma cortisol, blood pressure, urine flow and electrolyte balance. J Comp Physiol B 158(5):621–626

    Article  PubMed  CAS  Google Scholar 

  • Wang XJ, Walsh LP, Reinhart AJ, Stocco DM (2000) The role of arachidonic acid in steroidogenesis and steroidogenic acute regulatory (StAR) gene and protein expression. J Biol Chem 275(26):20204–20209

    Article  PubMed  CAS  Google Scholar 

  • Wang XJ, Dyson MT, Jo Y, Eubank DW, Stocco DA (2003a) Involvement of 5-lipoxygenase metabolites of arachidonic acid in cyclic AMP-stimulated steroidogenesis and steroidogenic acute regulatory protein gene expression. J Steroid Biochem Mol Biol 85(2–5):159–166

    Article  PubMed  CAS  Google Scholar 

  • Wang XJ, Dyson MT, Jo Y, Stocco DM (2003b) Inhibition of cyclooxygenase-2 activity enhances steroidogenesis and steroidogenic acute regulatory gene expression in MA-10 mouse Leydig cells. Endocrinology 144(8):3368–3375

    Article  PubMed  CAS  Google Scholar 

  • Wang XJ, Shen CL, Dyson MT, Yin XL, Schiffer RB, Grammas P, Stocco DM (2006) The involvement of epoxygenase metabolites of arachidonic acid in cAMP-stimulated steroidogenesis and steroidogenic acute regulatory protein gene expression. J Endocrinol 190(3):871–878

    Article  PubMed  CAS  Google Scholar 

  • Weirich CR, Reigh RC (2001) Dietary Lipids and Stress Tolerance of Larval Fish. Food Products Press, Binghamton NY

    Google Scholar 

  • Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77(3):591–625

    PubMed  CAS  Google Scholar 

  • Yoshida K, Shinohara H, Haneji T, Nagata T (2007) Arachidonic acid inhibits osteoblast differentiation through cytosolic phospholipase A2-dependent pathway. Oral Dis 13(1):32–39

    Article  PubMed  CAS  Google Scholar 

  • Yudt MR, Cidlowski JA (2002) The glucocorticoid receptor: coding a diversity of proteins and responses through a single gene. Mol Endocrinol 16(8):1719–1726

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by “Fundação para a Ciência e a Tecnologia” (FCT, Portugal; PTDC/MAR/67017/2006), “Consolider—Ingenio 2010” programme (Plan Nacional I + D+I + FEDER, Spain; CSD2007-00002), MCYT + FEDER (Plan Nacional I + D+I, Spain; AGL2007-64450-C02-01), POCTEP Programme (0251-ECOAQUA-5-E). This research also benefited from the grants SFRH/BPD/32469/2006 (FCT, Portugal) and COST-STSM-FA0801-5429 (LARVANET).

Conflict of interest

D. Alves Martins, G. Martínez-Rodríguez, F. Rocha, F. Castanheira, A. Mendes, P. Pousão-Ferreira, N. Bandarra, J. Coutinho, S. Morais, M. Yúfera, L.E.C. Conceição ensure the integrity of the work and none have conflicts of interest to the subject of the manuscript. D.A.M., S.M. and L.E.C.C. designed the research; D.A.M., S.M. and F.C. formulated and manufactured the diets; A.M., P.P.F., D.A.M., F.C., F.R., G.M.R., N.B. and J.C. conducted the experiment; P.P.F., M.Y., and L.E.C.C. provided essential reagents or materials; D.A.M. and F.R. performed the statistical analysis; D.A.M., G.M.R., S.M., M.Y., and L.E.C.C. contributed for manuscript writing; D.A.M. had primary responsibility for the final content. All authors have read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dulce Alves Martins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alves Martins, D., Rocha, F., Castanheira, F. et al. Effects of dietary arachidonic acid on cortisol production and gene expression in stress response in Senegalese sole (Solea senegalensis) post-larvae. Fish Physiol Biochem 39, 1223–1238 (2013). https://doi.org/10.1007/s10695-013-9778-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-013-9778-6

Keywords

Navigation